Causal Properties of Fibered Space-Time
Matematičeskie zametki, Tome 106 (2019) no. 1, pp. 115-133.

Voir la notice de l'article provenant de la source Math-Net.Ru

On the space of a principal bundle, a Lorentzian metric and a time orientation are given that are invariant with respect to the action of the structure group. These objects form a fibered space-time and, in the case of spacelike fibers, induce the same structures on the base. The following causality conditions are discussed: chronology, causality, stable and strong causality, and global hyperbolicity. It is proved that if the base space-time satisfies one of the above conditions, then so does the fibered space-time.
Keywords: principal bundle, $G$-connection, Lorentzian manifold, space-time, causality condition.
@article{MZM_2019_106_1_a10,
     author = {E. I. Yakovlev and T. A. Gonchar},
     title = {Causal {Properties} of {Fibered} {Space-Time}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {115--133},
     publisher = {mathdoc},
     volume = {106},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_1_a10/}
}
TY  - JOUR
AU  - E. I. Yakovlev
AU  - T. A. Gonchar
TI  - Causal Properties of Fibered Space-Time
JO  - Matematičeskie zametki
PY  - 2019
SP  - 115
EP  - 133
VL  - 106
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_106_1_a10/
LA  - ru
ID  - MZM_2019_106_1_a10
ER  - 
%0 Journal Article
%A E. I. Yakovlev
%A T. A. Gonchar
%T Causal Properties of Fibered Space-Time
%J Matematičeskie zametki
%D 2019
%P 115-133
%V 106
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_106_1_a10/
%G ru
%F MZM_2019_106_1_a10
E. I. Yakovlev; T. A. Gonchar. Causal Properties of Fibered Space-Time. Matematičeskie zametki, Tome 106 (2019) no. 1, pp. 115-133. http://geodesic.mathdoc.fr/item/MZM_2019_106_1_a10/

[1] S. P. Novikov, “Gamiltonov formalizm i mnogoznachnyi analog teorii Morsa”, UMN, 37:5 (227) (1982), 3–49 | MR | Zbl

[2] E. I. Yakovlev, “Dvukhtochechnye kraevye zadachi v relyativistskoi dinamike”, Matem. zametki, 59:3 (1996), 437–449 | DOI | MR | Zbl

[3] E. I. Yakovlev, “O suschestvovanii reshenii dvukhtochechnykh kraevykh zadach dlya giroskopicheskikh sistem relyativistskogo tipa”, Algebra i analiz, 9:2 (1997), 256–271 | MR

[4] E. I. Yakovlev, “Rassloeniya i geometricheskie struktury, assotsiirovannye s giroskopicheskimi sistemami”, Geometriya, SMFN, 22, RUDN, M., 2007, 100–126 | MR | Zbl

[5] J. K. Beem, P. E. Ehrlich, K. L. Easley, Global Lorentzian Geometry, Marcel Dekker, New York, 1996 | MR | Zbl

[6] A. N. Bernal, M. Sánchez, “On smooth Cauchy hypersurfaces and Geroch's splitting theorem”, Comm. Math. Phys., 243:3 (2003), 461–470 | DOI | MR | Zbl

[7] Ya. V. Bazaikin, “Globalno giperbolicheskie lorentsevy prostranstva so spetsialnymi gruppami golonomii”, Sib. matem. zhurn., 50:4 (2009), 721–736 | MR | Zbl

[8] V. N. Berestovskii, I. A. Zubareva, “Funktsii s (ne)vremennopodobnym gradientom na prostranstve-vremeni”, Matem. tr., 17:2 (2014), 41–60 | MR | Zbl

[9] Sh. Kobayasi, K. Nomidzu, Osnovy differentsialnoi geometrii, T. 1, Nauka, M., 1981 | MR | Zbl

[10] R. P. Geroch, “Domain of dependence”, J. Math. Phys., 11 (1970), 437–449 | DOI | MR | Zbl

[11] S. Khoking, Dzh. Ellis, Krupnomasshtabnaya struktura prostranstva–vremeni, Mir, M., 1977 | MR

[12] S. Hawking, “The existence of cosmic time functions”, Proc. Roy. Soc. A, A308 (1968), 433–435 | DOI

[13] E. I. Yakovlev, T. A. Gonchar, “Geometriya i topologiya nekotorykh rassloennykh rimanovykh mnogoobrazii”, Izv. vuzov. Matem., 2018, no. 2, 77–95 | Zbl

[14] B. A. Dubrovin, S. P. Novikov, A. T. Fomenko, Sovremennaya geometriya. Metody i prilozheniya, Nauka, M., 1979 | MR | Zbl

[15] I. D. Novikov, V. P. Frolov, Fizika chernykh dyr, Nauka, M., 1986

[16] S. Kobayashi, “Principal fibre bundles with the 1-dimensional toroidal group”, Tôhoku Math. J. (2), 8 (1956), 29–45 | DOI | MR | Zbl