Homogeneous Wiener--Hopf Double Integral Equation with Symmetric Kernel in the Conservative Case
Matematičeskie zametki, Tome 106 (2019) no. 1, pp. 3-12
Voir la notice de l'article provenant de la source Math-Net.Ru
We establish nontrivial solvability conditions for the homogeneous double integral equation $$ S(x,y)=\int^\infty_0 \int^\infty_0 K(x-x',y-y')S(x',y')\,dx'\,dy',\qquad (x,y)\in\mathbb R_+\times \mathbb R_+, $$ where $\mathbb R_+\equiv[0,+\infty)$, under the assumption that the given function $K$ satisfies the conservativity conditions $$ 0\le K\in L_1,\qquad \iint_{\mathbb R^2}K(x,y)\,dx\,dy=1 $$ and some additional conditions on its first and second moments.
Keywords:
Wiener–Hopf double integral equation, conservativity conditions, factorization of the integral operator.
@article{MZM_2019_106_1_a0,
author = {L. G. Arabadzhyan},
title = {Homogeneous {Wiener--Hopf} {Double} {Integral} {Equation} with {Symmetric} {Kernel} in the {Conservative} {Case}},
journal = {Matemati\v{c}eskie zametki},
pages = {3--12},
publisher = {mathdoc},
volume = {106},
number = {1},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_1_a0/}
}
TY - JOUR AU - L. G. Arabadzhyan TI - Homogeneous Wiener--Hopf Double Integral Equation with Symmetric Kernel in the Conservative Case JO - Matematičeskie zametki PY - 2019 SP - 3 EP - 12 VL - 106 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2019_106_1_a0/ LA - ru ID - MZM_2019_106_1_a0 ER -
L. G. Arabadzhyan. Homogeneous Wiener--Hopf Double Integral Equation with Symmetric Kernel in the Conservative Case. Matematičeskie zametki, Tome 106 (2019) no. 1, pp. 3-12. http://geodesic.mathdoc.fr/item/MZM_2019_106_1_a0/