Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2019_106_1_a0, author = {L. G. Arabadzhyan}, title = {Homogeneous {Wiener--Hopf} {Double} {Integral} {Equation} with {Symmetric} {Kernel} in the {Conservative} {Case}}, journal = {Matemati\v{c}eskie zametki}, pages = {3--12}, publisher = {mathdoc}, volume = {106}, number = {1}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_1_a0/} }
TY - JOUR AU - L. G. Arabadzhyan TI - Homogeneous Wiener--Hopf Double Integral Equation with Symmetric Kernel in the Conservative Case JO - Matematičeskie zametki PY - 2019 SP - 3 EP - 12 VL - 106 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2019_106_1_a0/ LA - ru ID - MZM_2019_106_1_a0 ER -
L. G. Arabadzhyan. Homogeneous Wiener--Hopf Double Integral Equation with Symmetric Kernel in the Conservative Case. Matematičeskie zametki, Tome 106 (2019) no. 1, pp. 3-12. http://geodesic.mathdoc.fr/item/MZM_2019_106_1_a0/
[1] L. G. Arabadzhyan, N. B. Engibaryan, “O faktorizatsii kratnykh integralnykh operatorov Vinera–Khopfa”, Dokl. AN SSSR, 291:1 (1986), 11–14 | MR | Zbl
[2] L. G. Arabadzhyan, “O suschestvovanii netrivialnykh reshenii nekotorykh lineinykh i nelineinykh uravnenii tipa svertki”, Ukr. matem. zhurn., 41:12 (1989), 1587–1595 | MR | Zbl
[3] N. B. Engibaryan, A. A. Arutyunyan, “Integralnye uravneniya na polupryamoi s raznostnymi yadrami i nelineinye funktsionalnye uravneniya”, Matem. sb., 97 (139):1 (5) (1975), 35–58 | MR | Zbl
[4] L. G. Arabadzhyan, N. B. Engibaryan, “Uravneniya v svertkakh i nelineinye funktsionalnye uravneniya”, Itogi nauki i tekhn. Ser. Mat. anal., 22, VINITI, M., 1984, 175–244 | MR | Zbl
[5] V. V. Smelov, Lektsii po teorii perenosa neitronov, Atomizdat, M., 1978
[6] Yu. I. Ershov, S. B. Shikhov, Matematicheskie osnovy teorii perenosa, T. 1, Energoatomizdat, M., 1985 | MR
[7] E. Hopf, Mathematical Problems of Radiative Equilibrium, Cambridge Tracts in Math. and Math. Phys., 31, Stechert-Hafner, New York, 1934 | MR
[8] S. Lam, A. Leonard, “Miln's problem for two-dimensional transport in a quarter space”, J. Quant. Spectrosc. Radiat. Transfer., 11:6 (1971), 893–904 | DOI | MR