@article{MZM_2019_106_1_a0,
author = {L. G. Arabadzhyan},
title = {Homogeneous {Wiener{\textendash}Hopf} {Double} {Integral} {Equation} with {Symmetric} {Kernel} in the {Conservative} {Case}},
journal = {Matemati\v{c}eskie zametki},
pages = {3--12},
year = {2019},
volume = {106},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_1_a0/}
}
L. G. Arabadzhyan. Homogeneous Wiener–Hopf Double Integral Equation with Symmetric Kernel in the Conservative Case. Matematičeskie zametki, Tome 106 (2019) no. 1, pp. 3-12. http://geodesic.mathdoc.fr/item/MZM_2019_106_1_a0/
[1] L. G. Arabadzhyan, N. B. Engibaryan, “O faktorizatsii kratnykh integralnykh operatorov Vinera–Khopfa”, Dokl. AN SSSR, 291:1 (1986), 11–14 | MR | Zbl
[2] L. G. Arabadzhyan, “O suschestvovanii netrivialnykh reshenii nekotorykh lineinykh i nelineinykh uravnenii tipa svertki”, Ukr. matem. zhurn., 41:12 (1989), 1587–1595 | MR | Zbl
[3] N. B. Engibaryan, A. A. Arutyunyan, “Integralnye uravneniya na polupryamoi s raznostnymi yadrami i nelineinye funktsionalnye uravneniya”, Matem. sb., 97 (139):1 (5) (1975), 35–58 | MR | Zbl
[4] L. G. Arabadzhyan, N. B. Engibaryan, “Uravneniya v svertkakh i nelineinye funktsionalnye uravneniya”, Itogi nauki i tekhn. Ser. Mat. anal., 22, VINITI, M., 1984, 175–244 | MR | Zbl
[5] V. V. Smelov, Lektsii po teorii perenosa neitronov, Atomizdat, M., 1978
[6] Yu. I. Ershov, S. B. Shikhov, Matematicheskie osnovy teorii perenosa, T. 1, Energoatomizdat, M., 1985 | MR
[7] E. Hopf, Mathematical Problems of Radiative Equilibrium, Cambridge Tracts in Math. and Math. Phys., 31, Stechert-Hafner, New York, 1934 | MR
[8] S. Lam, A. Leonard, “Miln's problem for two-dimensional transport in a quarter space”, J. Quant. Spectrosc. Radiat. Transfer., 11:6 (1971), 893–904 | DOI | MR