Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2019_105_6_a6, author = {R. I. Prosanov}, title = {Counterexamples to {Borsuk's} {Conjecture} with {Large} {Girth}}, journal = {Matemati\v{c}eskie zametki}, pages = {890--898}, publisher = {mathdoc}, volume = {105}, number = {6}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2019_105_6_a6/} }
R. I. Prosanov. Counterexamples to Borsuk's Conjecture with Large Girth. Matematičeskie zametki, Tome 105 (2019) no. 6, pp. 890-898. http://geodesic.mathdoc.fr/item/MZM_2019_105_6_a6/
[1] K. Borsuk, “Drei Sätze über die $n$-dimensionale euklidische Sphäre”, Fundam. Math., 20 (1933), 177–190 | DOI
[2] J. Kahn, G. Kalai, “A counterexample to Borsuk's conjecture”, Bull. Amer. Math. Soc. (N.S.), 29:1 (1993), 60–62 | DOI | MR | Zbl
[3] P. Brass, W. Moser, J. Pach, Research Problems in Discrete Geometry, Springer-Verlag, New York, 2005 | MR | Zbl
[4] V. G. Boltyanski, H. Martini, P. S. Soltan, Excursions into Combinatorial Geometry, Springer-Verlag, Berlin, 1997 | MR | Zbl
[5] A. M. Raigorodskii, “Problema Borsuka i khromaticheskie chisla nekotorykh metricheskikh prostranstv”, UMN, 56:1 (337) (2001), 107–146 | DOI | MR | Zbl
[6] A. M. Raigorodskii, “Vokrug gipotezy Borsuka”, Geometriya i mekhanika, SMFN, 23, RUDN, M., 2007, 147–164 | MR | Zbl
[7] A. M. Raigorodskii, “Three lectures on the Borsuk partition problem”, Surveys in Contemporary Mathematics, London Math. Soc. Lecture Note Ser., 347, Cambridge Univ. Press, Cambridge, 2007, 202–248 | MR
[8] A. M. Raigorodskii, “Combinatorial geometry and coding theory”, Fund. Inform., 145:3 (2016), 359–369 | MR | Zbl
[9] A. Soifer, The Mathematical Coloring Book: Mathematics of Coloring and the Colorful Life of its Creators, Springer-Verlag, New York, 2008 | MR
[10] A. M. Raigorodskii, “Coloring distance graphs and graphs of diameters”, Thirty Essays on Geometric Graph Theory, Springer-Verlag, New York, 2013, 429–460 | MR | Zbl
[11] A. M. Raigorodskii, “Cliques and cycles in distance graphs and graphs of diameters”, Discrete Geometry and Algebraic Combinatorics, Contemp. Math., 625, Amer. Math. Soc., Providence, RI, 2014, 93–109 | MR | Zbl
[12] A. M. Raigorodskii, D. D. Cherkashin, “O khromaticheskikh chislakh prostranstv maloi razmernosti”, Dokl. AN, 472:1 (2017), 11–12 | Zbl
[13] D. Cherkashin, A. Kulikov, A. Raigorodskii, “On the chromatic numbers of small-dimensional Euclidean spaces”, Discrete Appl. Math., 243 (2018), 125–131 | MR | Zbl
[14] L. I. Bogolyubskii, A. M. Raigorodskii, “Ob izmerimom khromaticheskom chisle prostranstva razmernosti $n\le 24$”, Dokl. AN, 465:6 (2015), 647–650 | DOI
[15] L. I. Bogolyubskii, A. M. Raigorodskii, “Zamechanie o nizhnikh otsenkakh khromaticheskikh chisel prostranstv maloi razmernosti s metrikami $\ell_1$ i $\ell_2$”, Matem. zametki, 105:2 (2019), 187–213 | DOI
[16] A. Ya. Kanel-Belov, V. A. Voronov, D. D. Cherkashin, “O khromaticheskom chisle ploskosti”, Algebra i analiz, 29:5 (2017), 68–89 | MR
[17] N. G. de Bruijn, P. Erdős, “A colour problem for infinite graphs and a problem in the theory of relations”, Nederl. Akad. Wetensch. Proc. Ser. A, 54 (1951), 369–373 | DOI | MR
[18] A. D. N. J. de Grey, “The chromatic number of the plane is at least 5”, Geombinatorics, 28:1 (2018), 18–31 | MR | Zbl
[19] A. M. Raigorodskii, “O khromaticheskom chisle prostranstva”, UMN, 55:2 (332) (2000), 147–148 | DOI | MR | Zbl
[20] D. G. Larman, C. A. Rogers, “The realization of distances within sets in Euclidean space”, Mathematika, 19 (1972), 1–24 | DOI | MR | Zbl
[21] R. Prosanov, A New Proof of the Larman–Rogers Upper Bound for the Chromatic Number of the Euclidean Space, 2016, arXiv: 1610.02846
[22] P. Erdős, “Graph theory and probability”, Canad. J. Math., 11 (1959), 34–38 | DOI | MR | Zbl
[23] L. Lovász, “On chromatic number of finite set-systems”, Acta Math. Acad. Sci. Hungar., 19 (1968), 59–67 | DOI | MR | Zbl
[24] P. O'Donnell, “Arbitrary girth, $4$-chromatic unit distance graphs in the plane I. Graph description”, Geombinatorics, 9:3 (2000), 145–152 | MR
[25] P. O'Donnell, “Arbitrary girth, $4$-chromatic unit distance graphs in the plane II. Graph embedding”, Geombinatorics, 9:4 (2000), 180–193 | MR | Zbl
[26] A. B. Kupavskii, “Distance graphs with large chromatic number and arbitrary girth”, Mosc. J. Comb. Number Theory, 2:2 (2012), 52–62 | MR | Zbl
[27] A. B. Kupavskii, “Yavnye i veroyatnostnye konstruktsii distantsionnykh grafov s malenkim klikovym i bolshim khromaticheskim chislami”, Izv. RAN. Ser. matem., 78:1 (2014), 65–98 | DOI | MR | Zbl
[28] Yu. A. Demidovich, “Nizhnyaya otsenka khromaticheskogo chisla ratsionalnogo prostranstva s metrikoi $l_u$ s odnim zapreschennym rasstoyaniem”, Matem. zametki, 102:4 (2017), 532–548 | DOI | MR | Zbl
[29] A. B. Kupavskii, A. Polyanskii, “Proof of Schur's conjecture in $\mathbb R^D$”, Combinatorica, 37:6 (2017), 1181–1205 | DOI | MR | Zbl
[30] L. Lovász, “Self-dual polytopes and the chromatic number of distance graphs on the sphere”, Acta Sci. Math. (Szeged), 45:1-4 (1983), 317–323 | MR | Zbl
[31] A. M. Raigorodskii, “On the chromatic numbers of spheres in $\mathbb R^n$”, Combinatorica, 32:1 (2012), 111–123 | DOI | MR | Zbl
[32] O. A. Kostina, A. M. Raigorodskii, “O nizhnikh otsenkakh khromaticheskogo chisla sfery”, Dokl. AN, 463:6 (2015), 639–641 | DOI | Zbl
[33] A. A. Sagdeev, “O teoreme Frankla–Redla”, Izv. RAN. Ser. matem., 82:6 (2018), 128–157 | DOI | Zbl
[34] A. M. Raigorodskii, A. A. Sagdeev, “O khromaticheskom chisle prostranstva s zapreschennym pravilnym simpleksom”, Dokl. AN, 472:2 (2017), 127–129 | DOI | Zbl
[35] A. A. Sagdeev, “O nizhnikh otsenkakh khromaticheskikh chisel distantsionnykh grafov s bolshim obkhvatom”, Matem. zametki, 101:3 (2017), 430–445 | DOI | MR | Zbl
[36] R. I. Prosanov, A. M. Raigorodskii, A. A. Sagdeev, “Uluchsheniya teoremy Frankla–Redlya i geometricheskie sledstviya”, Dokl. AN, 475:2 (2017), 137–139 | DOI | Zbl
[37] A. A. Sagdeev, “On a Frankl–Rödl theorem and its geometric corollaries”, Electron. Notes in Discrete Math., 61 (2017), 1033–1037 | DOI | Zbl
[38] A. A. Sagdeev, “O khromaticheskom chisle prostranstva s zapreschennym pravilnym simpleksom”, Matem. zametki, 102:4 (2017), 579–585 | DOI | MR | Zbl
[39] A. A. Sagdeev, “Uluchshennaya teorema Frankla–Redlya i nekotorye ee geometricheskie sledstviya”, Probl. peredachi inform., 54:2 (2018), 45–72
[40] A. A. Sagdeev, “Eksponentsialno ramseevskie mnozhestva”, Probl. peredachi inform., 54:4 (2018), 82–109
[41] R. C. Baker, G. Harman, J. Pintz, “The difference between consecutive primes. II”, Proc. London Math. Soc. (3), 83:3 (2001), 532–562 | DOI | MR | Zbl
[42] A. B Kupavskii, A. M. Raigorodskii, “Counterexamples to Borsuk's conjecture on spheres of small radii”, Mosc. J. Comb. Number Theory, 2:4 (2012), 27–48 | MR | Zbl