Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2019_105_6_a3, author = {A. V. Zvyagin}, title = {Solvability of a {Thermoviscoelastic} {Model} of the {Motion} of {Solutions} of {Polymers} {Satisfying} the {Objectivity} {Principle}}, journal = {Matemati\v{c}eskie zametki}, pages = {839--856}, publisher = {mathdoc}, volume = {105}, number = {6}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2019_105_6_a3/} }
TY - JOUR AU - A. V. Zvyagin TI - Solvability of a Thermoviscoelastic Model of the Motion of Solutions of Polymers Satisfying the Objectivity Principle JO - Matematičeskie zametki PY - 2019 SP - 839 EP - 856 VL - 105 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2019_105_6_a3/ LA - ru ID - MZM_2019_105_6_a3 ER -
%0 Journal Article %A A. V. Zvyagin %T Solvability of a Thermoviscoelastic Model of the Motion of Solutions of Polymers Satisfying the Objectivity Principle %J Matematičeskie zametki %D 2019 %P 839-856 %V 105 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2019_105_6_a3/ %G ru %F MZM_2019_105_6_a3
A. V. Zvyagin. Solvability of a Thermoviscoelastic Model of the Motion of Solutions of Polymers Satisfying the Objectivity Principle. Matematičeskie zametki, Tome 105 (2019) no. 6, pp. 839-856. http://geodesic.mathdoc.fr/item/MZM_2019_105_6_a3/
[1] Ya. I. Voitkunskii, V. B. Amfilokhiev, V. A. Pavlovskii, “Uravneniya dvizheniya zhidkosti s uchetom ee relaksatsionnykh svoistv”, Trudy Leningradskogo ordena Lenina korablestroitelnogo instituta, 69 (1970), 19–26
[2] V. A. Pavlovskii, “K voprosu o teoreticheskom opisanii slabykh vodnykh rastvorov polimerov”, Dokl. AN SSSR, 200:4 (1971), 809–812
[3] V. B. Amfilokhiev, Ya. I. Voitkunskii, N. P. Mazaeva, Ya. S. Khodorkovskii, “Techeniya polimernykh rastvorov pri nalichii konvektivnykh uskorenii”, Trudy Leningradskogo ordena Lenina korablestroitelnogo instituta, 96 (1975), 3–9
[4] V. B. Amfilokhiev, V. A. Pavlovskii, “Eksperimentalnye dannye o laminarno-turbulentnom perekhode pri techenii polimernykh rastvorov v trubakh”, Trudy Leningradskogo ordena Lenina korablestroitelnogo instituta, 104 (1976), 3–5
[5] A. P. Oskolkov, “O nekotorykh kvazilineinykh sistemakh, vstrechayuschikhsya pri izuchenii dvizheniya vyazkikh zhidkostei”, Kraevye zadachi matematicheskoi fiziki i smezhnye voprosy teorii funktsii. 8, Zap. nauchn. sem. LOMI, 52, Izd-vo «Nauka», Leningrad. otd., L., 1975, 128–157 | MR | Zbl
[6] V. G. Zvyagin, M. V. Turbin, Matematicheskie voprosy gidrodinamiki vyazkouprugikh sred, KRASAND (URSS), M., 2012
[7] A. V. Zvyagin, “Solvability for equations of motion of weak aqueous polymer solutions with objective derivative”, Nonlinear Anal., 90 (2013), 70–85 | DOI | MR | Zbl
[8] A. V. Zvyagin, “Attraktory dlya modeli dvizheniya polimerov s ob'ektivnoi proizvodnoi v reologicheskom sootnoshenii”, Dokl. AN, 453:6 (2013), 599–602 | DOI | Zbl
[9] S. N. Antontsev, A. V. Kazhikhov, V. N. Monakhov, Kraevye zadachi mekhaniki neodnorodnykh zhidkostei, Nauka, Novosibirsk, 1983 | MR
[10] A. V. Zvyagin, V. P. Orlov, “Issledovanie razreshimosti zadachi termovyazkouprugosti dlya lineino uprugo-zapazdyvayuschei zhidkosti Foigta”, Matem. zametki, 97:5 (2015), 681–698 | DOI | MR | Zbl
[11] A. V. Zvyagin, V. P. Orlov, “Razreshimost zadachi termovyazkouprugosti dlya odnoi modeli Oskolkova”, Izv. vuzov. Matem., 2014, no. 9, 69–74 | Zbl
[12] A. V. Zvyagin, “Optimalnoe upravlenie s obratnoi svyazyu dlya termovyazkouprugoi modeli dvizheniya zhidkosti Foigta”, Dokl. AN, 468:3 (2016), 251–253 | DOI | Zbl
[13] O. A. Ladyzhenskaya, Matematicheskaya teoriya vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1964
[14] R. Temam, Uravneniya Nave–Stoksa. Teoriya i chislennyi analiz, Mir, M., 1981
[15] I. I. Vorovich, V. I. Yudovich, “Statsionarnoe techenie vyazkoi neszhimaemoi zhidkosti”, Matem. sb., 53 (95):4 (1961), 393–428 | MR
[16] A. V. Fursikov, Optimalnoe upravlenie raspredelennymi sistemami. Teoriya i prilozheniya, Universitetskaya seriya, 5, Nauchnaya kniga, Novosibirsk, 1999 | Zbl
[17] V. G. Zvyagin, V. T. Dmitrienko, Approksimatsionno-topologicheskii podkhod k issledovaniyu zadach gidrodinamiki, Editorial URSS, M., 2004
[18] V. G. Zvyagin, “Approksimatsionno-topologicheskii podkhod k issledovaniyu matematicheskikh zadach gidrodinamiki”, SMFN, 46, RUDN, M., 2012, 92–119
[19] V. G. Zvyagin, V. P. Orlov, “Ob odnoi parabolicheskoi zadache dvizheniya termovyazkouprugikh sred”, Matem. zametki, 99:3 (2016), 465–469 | DOI | MR | Zbl
[20] V. G. Zvyagin, V. P. Orlov, “Solvability of a parabolic problem with non-smooth data”, J. Math. Anal. Appl., 453:1 (2017), 589–606 | DOI | MR | Zbl
[21] D. Blanchard, N. Bruyére, O. Guibé, “Existence and uniqueness of the solution of a Boussinesq system with nonlinear dissipation”, Commun. Pure Appl. Anal., 12:5 (2013), 2213–2227 | DOI | MR | Zbl
[22] D. Blanchard, “A few results on coupled systems of thermomechanics”, On the Notions of Solution to Nonlinear Elliptic Problems. Results and Developments, Quad. Mat., 23, Dept. Math., Seconda Univ. Napoli, Caserta, 2009, 145–182 | MR
[23] J. Simon, “Compact sets in the space $L^p(0,T; B)$”, Ann. Mat. Pura Appl. (4), 146 (1987), 65–96 | DOI | MR | Zbl