Transformation Operators for Perturbed Harmonic Oscillators
Matematičeskie zametki, Tome 105 (2019) no. 5, pp. 740-746.

Voir la notice de l'article provenant de la source Math-Net.Ru

The equation describing a perturbed harmonic oscillator is considered. Using transformation operators, we obtain representations of solutions of this equation with conditions at infinity. Estimates for the kernels of the transformation operators are obtained.
Keywords: perturbed harmonic oscillators, Schrödinger equation, transformation operator, second-order hyperbolic equation, Riemann function.
@article{MZM_2019_105_5_a7,
     author = {G. M. Masmaliev and A. Kh. Khanmamedov},
     title = {Transformation {Operators} for {Perturbed} {Harmonic} {Oscillators}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {740--746},
     publisher = {mathdoc},
     volume = {105},
     number = {5},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_105_5_a7/}
}
TY  - JOUR
AU  - G. M. Masmaliev
AU  - A. Kh. Khanmamedov
TI  - Transformation Operators for Perturbed Harmonic Oscillators
JO  - Matematičeskie zametki
PY  - 2019
SP  - 740
EP  - 746
VL  - 105
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_105_5_a7/
LA  - ru
ID  - MZM_2019_105_5_a7
ER  - 
%0 Journal Article
%A G. M. Masmaliev
%A A. Kh. Khanmamedov
%T Transformation Operators for Perturbed Harmonic Oscillators
%J Matematičeskie zametki
%D 2019
%P 740-746
%V 105
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_105_5_a7/
%G ru
%F MZM_2019_105_5_a7
G. M. Masmaliev; A. Kh. Khanmamedov. Transformation Operators for Perturbed Harmonic Oscillators. Matematičeskie zametki, Tome 105 (2019) no. 5, pp. 740-746. http://geodesic.mathdoc.fr/item/MZM_2019_105_5_a7/

[1] B. M. Levitan, Obratnye zadachi Shturma–Liuvillya, Nauka, M., 1984 | MR

[2] J. Delsarte, “Sur une extension de la formule de Taylor”, J. Math. Pures Appl., 17 (1938), 213–231 | Zbl

[3] A. Ya. Povzner, “O differentsialnykh uravneniyakh tipa Shturma–Liuvillya na poluosi”, Matem. sb., 23 (65):1 (1948), 3–52 | MR | Zbl

[4] V. A. Marchenko, “Nekotorye voprosy teorii differentsialnogo operatora vtorogo poryadka”, Dokl. AN SSSR, 72:3 (1950), 457–460 | MR | Zbl

[5] B. Ya. Levin, “Preobrazovanie tipa Fure i Laplasa pri pomoschi reshenii differentsialnogo uravneniya vtorogo poryadka”, Dokl. AN SSSR, 106:2 (1956), 187–190 | MR | Zbl

[6] V. A. Marchenko, Operatory Shturma–Liuvillya i ikh prilozheniya, Naukova Dumka, Kiev, 1977 | MR

[7] M. G. Gasymov, B. A. Mustafaev, “Obratnaya zadacha rasseyaniya dlya angarmonicheskogo uravneniya na poluosi”, Dokl. AN SSSR, 228:1 (1976), 11–14 | MR | Zbl

[8] Yi Shen Li, “One special inverse problem of the second order differential equation on the whole real axis”, Chinese Ann. Math., 2:2 (1981), 147–155 | MR

[9] A. P. Kachalov, Ya. V. Kurylev, “Metod operatorov preobrazovaniya v obratnoi zadache rasseyaniya. Odnomernyi shtark-effekt”, Matematicheskie voprosy teorii rasprostraneniya voln. 19, Zap. nauchn. sem. LOMI, 179, Izd-vo «Nauka», Leningrad. otd., L., 1989, 73–87 | MR | Zbl

[10] H. P. McKean, E. Trubowitz, “The spectral class of the quantum-mechanical harmonic oscillator”, Comm. Math. Phys., 82:4 (1982), 471–495 | DOI | MR | Zbl

[11] B. M. Levitan, “Ob operatorakh Shturma–Liuvillya na vsei pryamoi s odinakovym diskretnym spektrom”, Matem. sb., 132 (174):1 (1987), 73–103 | MR | Zbl

[12] D. Gurarie, “Asymptotic inverse spectral problem for anharmonic oscillators with odd potentials”, Inverse Problems, 5:3 (1989), 293–306 | DOI | MR | Zbl

[13] D. Chelkak, P. Kargaev, E. Korotyaev, “The inverse problem for an harmonic oscillator perturbed by potential: Uniqueness”, Lett. Math. Phys., 64:1 (2003), 7–21 | DOI | MR | Zbl

[14] D. Chelkak, P. Kargaev, E. Korotyaev, “Inverse problem for harmonic oscillator perturbed by potential, Characterization”, Comm. Math. Phys., 249:4 (2004), 133–196 | DOI | MR | Zbl

[15] D. Chelkak, E. Korotyaev, “The inverse problem for perturbed harmonic oscillator on the half-line with Dirichlet boundary condition”, Ann. Henri Poincaré, 8:6 (2007), 1115–1150 | DOI | MR | Zbl

[16] M. Abramovits, I. Stigan, Spravochnik po spetsialnym funktsiyam s formulami, grafikami i matematicheskimi tablitsami, Nauka, M., 1979 | MR | Zbl

[17] R. Courant, D. Hilbert, Methods of Mathematical Physics. Vol. II: Partial Differential Equations, Interscience Publ., New York, 1962 | MR | Zbl