Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2019_105_5_a7, author = {G. M. Masmaliev and A. Kh. Khanmamedov}, title = {Transformation {Operators} for {Perturbed} {Harmonic} {Oscillators}}, journal = {Matemati\v{c}eskie zametki}, pages = {740--746}, publisher = {mathdoc}, volume = {105}, number = {5}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2019_105_5_a7/} }
G. M. Masmaliev; A. Kh. Khanmamedov. Transformation Operators for Perturbed Harmonic Oscillators. Matematičeskie zametki, Tome 105 (2019) no. 5, pp. 740-746. http://geodesic.mathdoc.fr/item/MZM_2019_105_5_a7/
[1] B. M. Levitan, Obratnye zadachi Shturma–Liuvillya, Nauka, M., 1984 | MR
[2] J. Delsarte, “Sur une extension de la formule de Taylor”, J. Math. Pures Appl., 17 (1938), 213–231 | Zbl
[3] A. Ya. Povzner, “O differentsialnykh uravneniyakh tipa Shturma–Liuvillya na poluosi”, Matem. sb., 23 (65):1 (1948), 3–52 | MR | Zbl
[4] V. A. Marchenko, “Nekotorye voprosy teorii differentsialnogo operatora vtorogo poryadka”, Dokl. AN SSSR, 72:3 (1950), 457–460 | MR | Zbl
[5] B. Ya. Levin, “Preobrazovanie tipa Fure i Laplasa pri pomoschi reshenii differentsialnogo uravneniya vtorogo poryadka”, Dokl. AN SSSR, 106:2 (1956), 187–190 | MR | Zbl
[6] V. A. Marchenko, Operatory Shturma–Liuvillya i ikh prilozheniya, Naukova Dumka, Kiev, 1977 | MR
[7] M. G. Gasymov, B. A. Mustafaev, “Obratnaya zadacha rasseyaniya dlya angarmonicheskogo uravneniya na poluosi”, Dokl. AN SSSR, 228:1 (1976), 11–14 | MR | Zbl
[8] Yi Shen Li, “One special inverse problem of the second order differential equation on the whole real axis”, Chinese Ann. Math., 2:2 (1981), 147–155 | MR
[9] A. P. Kachalov, Ya. V. Kurylev, “Metod operatorov preobrazovaniya v obratnoi zadache rasseyaniya. Odnomernyi shtark-effekt”, Matematicheskie voprosy teorii rasprostraneniya voln. 19, Zap. nauchn. sem. LOMI, 179, Izd-vo «Nauka», Leningrad. otd., L., 1989, 73–87 | MR | Zbl
[10] H. P. McKean, E. Trubowitz, “The spectral class of the quantum-mechanical harmonic oscillator”, Comm. Math. Phys., 82:4 (1982), 471–495 | DOI | MR | Zbl
[11] B. M. Levitan, “Ob operatorakh Shturma–Liuvillya na vsei pryamoi s odinakovym diskretnym spektrom”, Matem. sb., 132 (174):1 (1987), 73–103 | MR | Zbl
[12] D. Gurarie, “Asymptotic inverse spectral problem for anharmonic oscillators with odd potentials”, Inverse Problems, 5:3 (1989), 293–306 | DOI | MR | Zbl
[13] D. Chelkak, P. Kargaev, E. Korotyaev, “The inverse problem for an harmonic oscillator perturbed by potential: Uniqueness”, Lett. Math. Phys., 64:1 (2003), 7–21 | DOI | MR | Zbl
[14] D. Chelkak, P. Kargaev, E. Korotyaev, “Inverse problem for harmonic oscillator perturbed by potential, Characterization”, Comm. Math. Phys., 249:4 (2004), 133–196 | DOI | MR | Zbl
[15] D. Chelkak, E. Korotyaev, “The inverse problem for perturbed harmonic oscillator on the half-line with Dirichlet boundary condition”, Ann. Henri Poincaré, 8:6 (2007), 1115–1150 | DOI | MR | Zbl
[16] M. Abramovits, I. Stigan, Spravochnik po spetsialnym funktsiyam s formulami, grafikami i matematicheskimi tablitsami, Nauka, M., 1979 | MR | Zbl
[17] R. Courant, D. Hilbert, Methods of Mathematical Physics. Vol. II: Partial Differential Equations, Interscience Publ., New York, 1962 | MR | Zbl