Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2019_105_5_a4, author = {V. G. Kanovei and V. A. Lyubetskii}, title = {Definable {Elements} of {Definable} {Borel} {Sets}}, journal = {Matemati\v{c}eskie zametki}, pages = {696--707}, publisher = {mathdoc}, volume = {105}, number = {5}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2019_105_5_a4/} }
V. G. Kanovei; V. A. Lyubetskii. Definable Elements of Definable Borel Sets. Matematičeskie zametki, Tome 105 (2019) no. 5, pp. 696-707. http://geodesic.mathdoc.fr/item/MZM_2019_105_5_a4/
[1] J. Hadamard, “Cinq lettres sur la théorie des ensembles”, Bull. Soc. Math. France, 33 (1905), 261–273 | DOI | MR | Zbl
[2] N. Lusin, P. Novikoff, “Choix effectif d'un point dans un complémentaire analytique arbitraire, donné par un crible”, Fund. Math., 25 (1935), 559–560 | DOI
[3] G. H. Moore, Zermelo's Axiom of Choice. Its Origins, Development and Influence., Springer-Verlag, New York, 1982 | MR | Zbl
[4] V. G. Kanovei, V. A. Lyubetskii, Sovremennaya teoriya mnozhestv: borelevskie i proektivnye mnozhestva, MTsNMO, M., 2010
[5] V. Kanovei, Borel Equivalence Relations. Structure and Classification, Amer. Math. Soc., Providence, RI, 2008 | MR | Zbl
[6] R. M. Solovay, “A model of set-theory in which every set of reals is Lebesgue measurable”, Ann. of Math. (2), 92 (1970), 1–56 | DOI | MR | Zbl
[7] V. Kanovei, V. Lyubetsky, “A definable $\mathsf E_0$-class containing no definable elements”, Arch. Math. Logic, 54:5-6 (2015), 711–723 | DOI | MR | Zbl
[8] V. G. Kanovei, V. A. Lyubetskii, “Opredelimoe schetnoe mnozhestvo, ne soderzhaschee opredelimykh elementov”, Matem. zametki, 102:3 (2017), 369–382 | DOI | MR | Zbl
[9] V. Kanovei, V. Lyubetsky, “Countable OD sets of reals belong to the ground model”, Arch. Math. Logic, 57:3-4 (2018), 285–298 | DOI | MR | Zbl
[10] V. G. Kanovei, V. A. Lyubetskii, “O nekotorykh klassicheskikh problemakh deskriptivnoi teorii mnozhestv”, UMN, 58:5 (353) (2003), 3–88 | DOI | MR | Zbl
[11] V. G. Kanovei, V. A. Lyubetskii, “O mnozhestve konstruktivnykh veschestvennykh chisel”, Geometricheskaya topologiya i teoriya mnozhestv, Tr. MIAN, 247, Nauka, MAIK «Nauka/Interperiodika», M., 2004, 95–128 | MR | Zbl
[12] V. Kanovei, “Non-Glimm-Effros equivalence relations at second projective level”, Fund. Math., 154:1 (1997), 1–35 | MR | Zbl
[13] Y. N. Moschovakis, Descriptive Set Theory, North-Holland Publ., Amsterdam, 1980 | MR | Zbl
[14] Dzh. Shenfild, Matematicheskaya logika, Nauka, M., 1975 | MR
[15] V. Kanovei, “When a partial Borel order is linearizable”, Fund. Math., 155:3 (1998), 301–309 | DOI | MR | Zbl
[16] M. Kondô, “L'uniformisation des complémentaires analytiques”, Proc. Imp. Acad., 13:8 (1937), 287–291 | DOI | MR
[17] J. W. Addison, “Separation principles in the hierarchies of classical and effective descriptive set theory”, Fund. Math., 46 (1959), 123–135 | MR | Zbl
[18] J. Stern, “On Lusin's restricted continuum problem”, Ann. of Math. (2), 120:1 (1984), 7–37 | DOI | MR | Zbl
[19] V. G. Kanovei, V. A. Lyubetskii, Sovremennaya teoriya mnozhestv: absolyutno nerazreshimye klassicheskie problemy, MTsNMO, M., 2013