Definable Elements of Definable Borel Sets
Matematičeskie zametki, Tome 105 (2019) no. 5, pp. 696-707.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that it is true in Sacks, Cohen, and Solovay generic extensions that any ordinal definable Borel set of reals necessarily contains an ordinal definable element. This result has previously been known only for countable sets.
Mots-clés : definable elements
Keywords: Borel sets, Cohen forcing, Solovay forcing.
@article{MZM_2019_105_5_a4,
     author = {V. G. Kanovei and V. A. Lyubetskii},
     title = {Definable {Elements} of {Definable} {Borel} {Sets}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {696--707},
     publisher = {mathdoc},
     volume = {105},
     number = {5},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_105_5_a4/}
}
TY  - JOUR
AU  - V. G. Kanovei
AU  - V. A. Lyubetskii
TI  - Definable Elements of Definable Borel Sets
JO  - Matematičeskie zametki
PY  - 2019
SP  - 696
EP  - 707
VL  - 105
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_105_5_a4/
LA  - ru
ID  - MZM_2019_105_5_a4
ER  - 
%0 Journal Article
%A V. G. Kanovei
%A V. A. Lyubetskii
%T Definable Elements of Definable Borel Sets
%J Matematičeskie zametki
%D 2019
%P 696-707
%V 105
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_105_5_a4/
%G ru
%F MZM_2019_105_5_a4
V. G. Kanovei; V. A. Lyubetskii. Definable Elements of Definable Borel Sets. Matematičeskie zametki, Tome 105 (2019) no. 5, pp. 696-707. http://geodesic.mathdoc.fr/item/MZM_2019_105_5_a4/

[1] J. Hadamard, “Cinq lettres sur la théorie des ensembles”, Bull. Soc. Math. France, 33 (1905), 261–273 | DOI | MR | Zbl

[2] N. Lusin, P. Novikoff, “Choix effectif d'un point dans un complémentaire analytique arbitraire, donné par un crible”, Fund. Math., 25 (1935), 559–560 | DOI

[3] G. H. Moore, Zermelo's Axiom of Choice. Its Origins, Development and Influence., Springer-Verlag, New York, 1982 | MR | Zbl

[4] V. G. Kanovei, V. A. Lyubetskii, Sovremennaya teoriya mnozhestv: borelevskie i proektivnye mnozhestva, MTsNMO, M., 2010

[5] V. Kanovei, Borel Equivalence Relations. Structure and Classification, Amer. Math. Soc., Providence, RI, 2008 | MR | Zbl

[6] R. M. Solovay, “A model of set-theory in which every set of reals is Lebesgue measurable”, Ann. of Math. (2), 92 (1970), 1–56 | DOI | MR | Zbl

[7] V. Kanovei, V. Lyubetsky, “A definable $\mathsf E_0$-class containing no definable elements”, Arch. Math. Logic, 54:5-6 (2015), 711–723 | DOI | MR | Zbl

[8] V. G. Kanovei, V. A. Lyubetskii, “Opredelimoe schetnoe mnozhestvo, ne soderzhaschee opredelimykh elementov”, Matem. zametki, 102:3 (2017), 369–382 | DOI | MR | Zbl

[9] V. Kanovei, V. Lyubetsky, “Countable OD sets of reals belong to the ground model”, Arch. Math. Logic, 57:3-4 (2018), 285–298 | DOI | MR | Zbl

[10] V. G. Kanovei, V. A. Lyubetskii, “O nekotorykh klassicheskikh problemakh deskriptivnoi teorii mnozhestv”, UMN, 58:5 (353) (2003), 3–88 | DOI | MR | Zbl

[11] V. G. Kanovei, V. A. Lyubetskii, “O mnozhestve konstruktivnykh veschestvennykh chisel”, Geometricheskaya topologiya i teoriya mnozhestv, Tr. MIAN, 247, Nauka, MAIK «Nauka/Interperiodika», M., 2004, 95–128 | MR | Zbl

[12] V. Kanovei, “Non-Glimm-Effros equivalence relations at second projective level”, Fund. Math., 154:1 (1997), 1–35 | MR | Zbl

[13] Y. N. Moschovakis, Descriptive Set Theory, North-Holland Publ., Amsterdam, 1980 | MR | Zbl

[14] Dzh. Shenfild, Matematicheskaya logika, Nauka, M., 1975 | MR

[15] V. Kanovei, “When a partial Borel order is linearizable”, Fund. Math., 155:3 (1998), 301–309 | DOI | MR | Zbl

[16] M. Kondô, “L'uniformisation des complémentaires analytiques”, Proc. Imp. Acad., 13:8 (1937), 287–291 | DOI | MR

[17] J. W. Addison, “Separation principles in the hierarchies of classical and effective descriptive set theory”, Fund. Math., 46 (1959), 123–135 | MR | Zbl

[18] J. Stern, “On Lusin's restricted continuum problem”, Ann. of Math. (2), 120:1 (1984), 7–37 | DOI | MR | Zbl

[19] V. G. Kanovei, V. A. Lyubetskii, Sovremennaya teoriya mnozhestv: absolyutno nerazreshimye klassicheskie problemy, MTsNMO, M., 2013