Conditions for the $L_{p,\lambda}$-Boundedness of the Riesz Potential Generated by the Gegenbauer Differential Operator
Matematičeskie zametki, Tome 105 (2019) no. 5, pp. 685-695

Voir la notice de l'article provenant de la source Math-Net.Ru

The results obtained in this paper refine and supplement a Hardy–Littlewood–Sobolev type theorem on the boundedness of the Riesz potential generated by the Gegenbauer differential operator on the spaces $L_{p,\lambda}$ proved in an earlier paper of the second author.
Keywords: Gegenbauer differential operator, Gegenbauer potential, generalized shift operator.
@article{MZM_2019_105_5_a3,
     author = {V. S. Guliev and E. D. Ibragimov},
     title = {Conditions for the $L_{p,\lambda}${-Boundedness} of the {Riesz} {Potential} {Generated} by the {Gegenbauer} {Differential} {Operator}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {685--695},
     publisher = {mathdoc},
     volume = {105},
     number = {5},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_105_5_a3/}
}
TY  - JOUR
AU  - V. S. Guliev
AU  - E. D. Ibragimov
TI  - Conditions for the $L_{p,\lambda}$-Boundedness of the Riesz Potential Generated by the Gegenbauer Differential Operator
JO  - Matematičeskie zametki
PY  - 2019
SP  - 685
EP  - 695
VL  - 105
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_105_5_a3/
LA  - ru
ID  - MZM_2019_105_5_a3
ER  - 
%0 Journal Article
%A V. S. Guliev
%A E. D. Ibragimov
%T Conditions for the $L_{p,\lambda}$-Boundedness of the Riesz Potential Generated by the Gegenbauer Differential Operator
%J Matematičeskie zametki
%D 2019
%P 685-695
%V 105
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_105_5_a3/
%G ru
%F MZM_2019_105_5_a3
V. S. Guliev; E. D. Ibragimov. Conditions for the $L_{p,\lambda}$-Boundedness of the Riesz Potential Generated by the Gegenbauer Differential Operator. Matematičeskie zametki, Tome 105 (2019) no. 5, pp. 685-695. http://geodesic.mathdoc.fr/item/MZM_2019_105_5_a3/