Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2019_105_5_a3, author = {V. S. Guliev and E. D. Ibragimov}, title = {Conditions for the $L_{p,\lambda}${-Boundedness} of the {Riesz} {Potential} {Generated} by the {Gegenbauer} {Differential} {Operator}}, journal = {Matemati\v{c}eskie zametki}, pages = {685--695}, publisher = {mathdoc}, volume = {105}, number = {5}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2019_105_5_a3/} }
TY - JOUR AU - V. S. Guliev AU - E. D. Ibragimov TI - Conditions for the $L_{p,\lambda}$-Boundedness of the Riesz Potential Generated by the Gegenbauer Differential Operator JO - Matematičeskie zametki PY - 2019 SP - 685 EP - 695 VL - 105 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2019_105_5_a3/ LA - ru ID - MZM_2019_105_5_a3 ER -
%0 Journal Article %A V. S. Guliev %A E. D. Ibragimov %T Conditions for the $L_{p,\lambda}$-Boundedness of the Riesz Potential Generated by the Gegenbauer Differential Operator %J Matematičeskie zametki %D 2019 %P 685-695 %V 105 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2019_105_5_a3/ %G ru %F MZM_2019_105_5_a3
V. S. Guliev; E. D. Ibragimov. Conditions for the $L_{p,\lambda}$-Boundedness of the Riesz Potential Generated by the Gegenbauer Differential Operator. Matematičeskie zametki, Tome 105 (2019) no. 5, pp. 685-695. http://geodesic.mathdoc.fr/item/MZM_2019_105_5_a3/