Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2019_105_5_a3, author = {V. S. Guliev and E. D. Ibragimov}, title = {Conditions for the $L_{p,\lambda}${-Boundedness} of the {Riesz} {Potential} {Generated} by the {Gegenbauer} {Differential} {Operator}}, journal = {Matemati\v{c}eskie zametki}, pages = {685--695}, publisher = {mathdoc}, volume = {105}, number = {5}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2019_105_5_a3/} }
TY - JOUR AU - V. S. Guliev AU - E. D. Ibragimov TI - Conditions for the $L_{p,\lambda}$-Boundedness of the Riesz Potential Generated by the Gegenbauer Differential Operator JO - Matematičeskie zametki PY - 2019 SP - 685 EP - 695 VL - 105 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2019_105_5_a3/ LA - ru ID - MZM_2019_105_5_a3 ER -
%0 Journal Article %A V. S. Guliev %A E. D. Ibragimov %T Conditions for the $L_{p,\lambda}$-Boundedness of the Riesz Potential Generated by the Gegenbauer Differential Operator %J Matematičeskie zametki %D 2019 %P 685-695 %V 105 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2019_105_5_a3/ %G ru %F MZM_2019_105_5_a3
V. S. Guliev; E. D. Ibragimov. Conditions for the $L_{p,\lambda}$-Boundedness of the Riesz Potential Generated by the Gegenbauer Differential Operator. Matematičeskie zametki, Tome 105 (2019) no. 5, pp. 685-695. http://geodesic.mathdoc.fr/item/MZM_2019_105_5_a3/
[1] D. R. Adams, “A note on Riesz potential”, Duke Math. J., 42:4 (1975), 765–778 | DOI | MR
[2] V. S. Guliyev, “On maximal function and fractional integral, associated with the Bessel differential operator”, Math. Inequal. Appl., 6:2 (2003), 317–330 | MR
[3] V. S. Guliyev, J. Hasanov, “Necessary and sufficient conditions for the boundedness of $B$-Riesz potential in the $B$-Morrey spaces”, J. Math. Anal. Appl., 347:1 (2008), 113–122 | DOI | MR | Zbl
[4] V. S. Guliyev, E. J. Ibrahimov, S. Ar. Jafarova, “Gegenbauer harmonic analysis and approximation of functions on the half line”, Adv. in Anal., 2:3 (2017), 167–195 | DOI
[5] L. Durant, P. M. Fisbane, L. M. Simmons, “Expansion formulas and addition theorems for Gegenbauer functions”, J. Math. Phys., 17:11 (1976), 1933–1948 | DOI | MR
[6] B. M. Levitan, “Razlozhenie po funktsiyam Besselya v ryady i integraly Fure”, UMN, 6:2(42) (1951), 102–143 | MR | Zbl
[7] B. M. Levitan, Teoriya operatorov obobschennogo sdviga, Nauka, M., 1973 | MR
[8] M. Flensted-Jensen, T. H. Koornwinder, “The convolution structure for Jacobi function expansions”, Ark. Mat., 11 (1973), 245–262 | DOI | MR | Zbl
[9] E. J. Ibrahimov, A. Akbulut, “The Hardy–Littlewood–Sobolev theorem for Riesz poential generated by Gegenbauer operator”, Trans. A. Razmadze Math. Inst., 170:2 (2016), 166–199 | MR | Zbl