Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2019_105_5_a10, author = {G. D. Solomadin}, title = {Quasitoric {Totally} {Normally} {Split} {Representatives} in the {Unitary} {Cobordism} {Ring}}, journal = {Matemati\v{c}eskie zametki}, pages = {771--791}, publisher = {mathdoc}, volume = {105}, number = {5}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2019_105_5_a10/} }
G. D. Solomadin. Quasitoric Totally Normally Split Representatives in the Unitary Cobordism Ring. Matematičeskie zametki, Tome 105 (2019) no. 5, pp. 771-791. http://geodesic.mathdoc.fr/item/MZM_2019_105_5_a10/
[1] V. M. Buchstaber, T. E. Panov, N. Ray, “Spaces of polytopes and cobordism of quasitoric manifolds”, Mosc. Math. J., 7:2 (2007), 219–242 | DOI | MR | Zbl
[2] N. Ray, “On a construction in bordism theory”, Proc. Edinburgh Math. Soc. (2), 29:3 (1986), 413–422 | DOI | MR | Zbl
[3] V. M. Bukhshtaber, N. Rei, “Toricheskie mnogoobraziya i kompleksnye kobordizmy”, UMN, 53:2(320) (1998), 139–140 | DOI | MR | Zbl
[4] V. M. Buchstaber, T. E. Panov, Toric Topology, Amer. Math. Soc., Providence, RI, 2015 | MR | Zbl
[5] J. Milnor, “On the Stiefel–Whitney numbers of complex manifolds and of spin manifolds”, Topology, 3:3 (1965), 223–230 | DOI | MR | Zbl
[6] M. Davis, T. Januszkiewicz, “Convex polytopes, Coxeter orbifolds and torus actions”, Duke Math. J., 62:2 (1991), 417–451 | MR | Zbl
[7] A. Wilfong, “Toric polynomial generators of complex cobordism”, Algebr. Geom. Topol., 16:3 (2016), 1473–1491 | DOI | MR | Zbl
[8] G. D. Solomadin, Yu. M. Ustinovskii, “Proektivnye toricheskie polinomialnye obrazuyuschie v koltse kompleksnykh kobordizmov”, Matem. sb., 207:11 (2016), 127–152 | DOI | MR | Zbl
[9] S. Ochanine, “Sur les genres multiplicatifs définis par des intégrales elliptiques”, Topology, 26:2 (1987), 143–151 | DOI | MR | Zbl
[10] R. Stong, Zametki po teorii kobordizmov, Mir, M., 1973 | MR
[11] R. Thom, “Quelques propriétés globales des variétés différentiables”, Comment. Math. Helv., 28 (1954), 17–86 | DOI | MR | Zbl
[12] B. Florian, “Lifting of morphisms to quotient presentations”, Manuscripta Math., 110:1 (2003), 33–44 | DOI | MR | Zbl
[13] M. Imaoka, “Extendibility of negative vector bundles over the complex projective space”, Hiroshima Math. J., 36:1 (2006), 49–60 | DOI | MR | Zbl
[14] Z. Lü, T. Panov, “On toric generators in the unitary and special unitary bordism groups”, Algebr. Geom. Topol., 16:5 (2016), 2865–2893 | DOI | MR | Zbl
[15] I. R. Shafarevich, Basic Algebraic Geometry. 2. Schemes and Complex Manifolds, Springer-Verlag, Berlin, 2013 | MR | Zbl
[16] N. J. Fine, “Binomial coefficients modulo a prime”, Amer. Math. Monthly, 54 (1947), 589–592 | DOI | MR | Zbl
[17] N. J. Hitchin, “Harmonic spinors”, Advances in Math., 14 (1974), 1–55 | DOI | MR | Zbl
[18] A. Granville, “Arithmetic properties of binomial coefficients. I. Binomial coefficients modulo prime powers”, Organic Mathematics (Burnaby, BC, 1995), CMS Conf. Proc., 20, Amer. Math. Soc., Providence, RI, 1997, 253–276 | MR | Zbl