Quasitoric Totally Normally Split Representatives in the Unitary Cobordism Ring
Matematičeskie zametki, Tome 105 (2019) no. 5, pp. 771-791.

Voir la notice de l'article provenant de la source Math-Net.Ru

A smooth stably complex manifold is said to be totally tangentially/normally split if its stably tangential/normal bundle is isomorphic to a sum of complex line bundles. It is proved that each class of degree greater than 2 in the graded unitary cobordism ring contains a quasitoric totally tangentially and normally split manifold.
Keywords: complex cobordisms, quasitoric manifold, Bott tower
Mots-clés : residues of binomial coefficients.
@article{MZM_2019_105_5_a10,
     author = {G. D. Solomadin},
     title = {Quasitoric {Totally} {Normally} {Split} {Representatives} in the {Unitary} {Cobordism} {Ring}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {771--791},
     publisher = {mathdoc},
     volume = {105},
     number = {5},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_105_5_a10/}
}
TY  - JOUR
AU  - G. D. Solomadin
TI  - Quasitoric Totally Normally Split Representatives in the Unitary Cobordism Ring
JO  - Matematičeskie zametki
PY  - 2019
SP  - 771
EP  - 791
VL  - 105
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_105_5_a10/
LA  - ru
ID  - MZM_2019_105_5_a10
ER  - 
%0 Journal Article
%A G. D. Solomadin
%T Quasitoric Totally Normally Split Representatives in the Unitary Cobordism Ring
%J Matematičeskie zametki
%D 2019
%P 771-791
%V 105
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_105_5_a10/
%G ru
%F MZM_2019_105_5_a10
G. D. Solomadin. Quasitoric Totally Normally Split Representatives in the Unitary Cobordism Ring. Matematičeskie zametki, Tome 105 (2019) no. 5, pp. 771-791. http://geodesic.mathdoc.fr/item/MZM_2019_105_5_a10/

[1] V. M. Buchstaber, T. E. Panov, N. Ray, “Spaces of polytopes and cobordism of quasitoric manifolds”, Mosc. Math. J., 7:2 (2007), 219–242 | DOI | MR | Zbl

[2] N. Ray, “On a construction in bordism theory”, Proc. Edinburgh Math. Soc. (2), 29:3 (1986), 413–422 | DOI | MR | Zbl

[3] V. M. Bukhshtaber, N. Rei, “Toricheskie mnogoobraziya i kompleksnye kobordizmy”, UMN, 53:2(320) (1998), 139–140 | DOI | MR | Zbl

[4] V. M. Buchstaber, T. E. Panov, Toric Topology, Amer. Math. Soc., Providence, RI, 2015 | MR | Zbl

[5] J. Milnor, “On the Stiefel–Whitney numbers of complex manifolds and of spin manifolds”, Topology, 3:3 (1965), 223–230 | DOI | MR | Zbl

[6] M. Davis, T. Januszkiewicz, “Convex polytopes, Coxeter orbifolds and torus actions”, Duke Math. J., 62:2 (1991), 417–451 | MR | Zbl

[7] A. Wilfong, “Toric polynomial generators of complex cobordism”, Algebr. Geom. Topol., 16:3 (2016), 1473–1491 | DOI | MR | Zbl

[8] G. D. Solomadin, Yu. M. Ustinovskii, “Proektivnye toricheskie polinomialnye obrazuyuschie v koltse kompleksnykh kobordizmov”, Matem. sb., 207:11 (2016), 127–152 | DOI | MR | Zbl

[9] S. Ochanine, “Sur les genres multiplicatifs définis par des intégrales elliptiques”, Topology, 26:2 (1987), 143–151 | DOI | MR | Zbl

[10] R. Stong, Zametki po teorii kobordizmov, Mir, M., 1973 | MR

[11] R. Thom, “Quelques propriétés globales des variétés différentiables”, Comment. Math. Helv., 28 (1954), 17–86 | DOI | MR | Zbl

[12] B. Florian, “Lifting of morphisms to quotient presentations”, Manuscripta Math., 110:1 (2003), 33–44 | DOI | MR | Zbl

[13] M. Imaoka, “Extendibility of negative vector bundles over the complex projective space”, Hiroshima Math. J., 36:1 (2006), 49–60 | DOI | MR | Zbl

[14] Z. Lü, T. Panov, “On toric generators in the unitary and special unitary bordism groups”, Algebr. Geom. Topol., 16:5 (2016), 2865–2893 | DOI | MR | Zbl

[15] I. R. Shafarevich, Basic Algebraic Geometry. 2. Schemes and Complex Manifolds, Springer-Verlag, Berlin, 2013 | MR | Zbl

[16] N. J. Fine, “Binomial coefficients modulo a prime”, Amer. Math. Monthly, 54 (1947), 589–592 | DOI | MR | Zbl

[17] N. J. Hitchin, “Harmonic spinors”, Advances in Math., 14 (1974), 1–55 | DOI | MR | Zbl

[18] A. Granville, “Arithmetic properties of binomial coefficients. I. Binomial coefficients modulo prime powers”, Organic Mathematics (Burnaby, BC, 1995), CMS Conf. Proc., 20, Amer. Math. Soc., Providence, RI, 1997, 253–276 | MR | Zbl