Quasitoric Totally Normally Split Representatives in the Unitary Cobordism Ring
Matematičeskie zametki, Tome 105 (2019) no. 5, pp. 771-791

Voir la notice de l'article provenant de la source Math-Net.Ru

A smooth stably complex manifold is said to be totally tangentially/normally split if its stably tangential/normal bundle is isomorphic to a sum of complex line bundles. It is proved that each class of degree greater than 2 in the graded unitary cobordism ring contains a quasitoric totally tangentially and normally split manifold.
Keywords: complex cobordisms, quasitoric manifold, Bott tower
Mots-clés : residues of binomial coefficients.
@article{MZM_2019_105_5_a10,
     author = {G. D. Solomadin},
     title = {Quasitoric {Totally} {Normally} {Split} {Representatives} in the {Unitary} {Cobordism} {Ring}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {771--791},
     publisher = {mathdoc},
     volume = {105},
     number = {5},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_105_5_a10/}
}
TY  - JOUR
AU  - G. D. Solomadin
TI  - Quasitoric Totally Normally Split Representatives in the Unitary Cobordism Ring
JO  - Matematičeskie zametki
PY  - 2019
SP  - 771
EP  - 791
VL  - 105
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_105_5_a10/
LA  - ru
ID  - MZM_2019_105_5_a10
ER  - 
%0 Journal Article
%A G. D. Solomadin
%T Quasitoric Totally Normally Split Representatives in the Unitary Cobordism Ring
%J Matematičeskie zametki
%D 2019
%P 771-791
%V 105
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_105_5_a10/
%G ru
%F MZM_2019_105_5_a10
G. D. Solomadin. Quasitoric Totally Normally Split Representatives in the Unitary Cobordism Ring. Matematičeskie zametki, Tome 105 (2019) no. 5, pp. 771-791. http://geodesic.mathdoc.fr/item/MZM_2019_105_5_a10/