Trace and Differences of Idempotents in $C^*$-Algebras
Matematičeskie zametki, Tome 105 (2019) no. 5, pp. 647-655.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\varphi$ be a trace on a unital $C^*$-algebra $\mathcal{A}$, let $\mathfrak{M}_{\varphi}$ be the ideal of definition of the trace $\varphi$, and let $P,Q \in \mathcal{A}$ be idempotents such that $QP=P$. If $Q \in \mathfrak{M}_{\varphi}$, then $P \in \mathfrak{M}_{\varphi}$ and $0 \le \varphi(P) \le \varphi(Q)$. If $Q-P \in \mathfrak{M}_{\varphi}$, then $\varphi(Q-P)\in \mathbb{R}^+$. Let $A,B\in \mathcal{A}$ be tripotents. If $AB=B$ and $A\in \mathfrak{M}_{\varphi}$, then $B \in \mathfrak{M}_{\varphi}$ and $0 \le \varphi (B^2)\le \varphi (A^2)+\infty$. Let $\mathcal{A}$ be a von Neumann algebra. Then $$ \varphi(|PQ-QP|)\le \min\{\varphi(P),\varphi(Q),\varphi(|P-Q|)\} $$ for all projections $P,Q \in \mathcal{A}$. The following conditions are equivalent for a positive normal functional $\varphi$ on a von Neumann algebra $\mathcal{A}$: (i) $\varphi $ is a trace; (ii) $\varphi(Q-P) \in \mathbb{R}^+$ for all idempotents $P,Q \in \mathcal{A}$ with $QP=P$; (iii) $ \varphi(|PQ-QP|) \le \min\{\varphi(P),\varphi(Q)\}$ for all projections $P,Q \in \mathcal{A}$; (iv) $\varphi(PQ+QP) \le \varphi(PQP+QPQ)$ for all projections $P,Q \in \mathcal{A}$.
Keywords: Hilbert space, linear operator, idempotent, projection, trace-class operators, commutator, von Neumann algebra, $C^*$-algebra, trace.
Mots-clés : tripotent
@article{MZM_2019_105_5_a0,
     author = {A. M. Bikchentaev},
     title = {Trace and {Differences} of {Idempotents} in $C^*${-Algebras}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {647--655},
     publisher = {mathdoc},
     volume = {105},
     number = {5},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_105_5_a0/}
}
TY  - JOUR
AU  - A. M. Bikchentaev
TI  - Trace and Differences of Idempotents in $C^*$-Algebras
JO  - Matematičeskie zametki
PY  - 2019
SP  - 647
EP  - 655
VL  - 105
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_105_5_a0/
LA  - ru
ID  - MZM_2019_105_5_a0
ER  - 
%0 Journal Article
%A A. M. Bikchentaev
%T Trace and Differences of Idempotents in $C^*$-Algebras
%J Matematičeskie zametki
%D 2019
%P 647-655
%V 105
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_105_5_a0/
%G ru
%F MZM_2019_105_5_a0
A. M. Bikchentaev. Trace and Differences of Idempotents in $C^*$-Algebras. Matematičeskie zametki, Tome 105 (2019) no. 5, pp. 647-655. http://geodesic.mathdoc.fr/item/MZM_2019_105_5_a0/

[1] J. J. Koliha, V. Rakočević, “Invertibility of the difference of idempotents”, Linear Multilinear Algebra, 51:1 (2003), 97–110 | DOI | MR

[2] J. J. Koliha, V. Rakočević, I. Straškraba, “The difference and sum of projectors”, Linear Algebra Appl., 388 (2004), 279–288 | DOI | MR | Zbl

[3] J. J. Koliha, V. Rakočević, “Fredholm properties of the difference of orhogonal projections in a Hilbert space”, Integral Equations Operator Theory, 52:1 (2005), 125–134 | DOI | MR | Zbl

[4] A. M. Bikchentaev, “Ob idempotentnykh $\tau$-izmerimykh operatorakh, prisoedinennykh k algebre fon Neimana”, Matem. zametki, 100:4 (2016), 492–503 | DOI | MR | Zbl

[5] N. J. Kalton, “A note on pairs of projections”, Bol. Soc. Mat. Mexicana (3), 3:2 (1997), 309–311 | MR | Zbl

[6] J. Avron, R. Seiler, B. Simon, “The index of a pair of projections”, J. Funct. Anal., 120:1 (1994), 220–237 | DOI | MR | Zbl

[7] A. M. Bikchentaev, “Raznosti idempotentov v $C^*$-algebrakh i kvantovyi effekt Kholla”, TMF, 195:1 (2018), 75–80 | DOI | Zbl

[8] A. M. Bikchentaev, R. S. Yakushev, “Representation of tripotents and representations via tripotents”, Linear Algebra Appl., 435:9 (2011), 2156–2165 | DOI | MR | Zbl

[9] A. M. Bikchentaev, “Tripotents in algebras: invertibility and hyponormality”, Lobachevskii J. Math., 35:3 (2014), 281–285 | DOI | MR | Zbl

[10] A. M. Bikchentaev, “Raznosti idempotentov v $C^*$-algebrakh”, Sib. matem. zhurn., 58:2 (2017), 243–250 | DOI | Zbl

[11] Dzh. Merfi, $C^*$-algebry i teoriya operatorov, Faktorial, M., 1997 | MR | Zbl

[12] J. J. Koliha, V. Rakočević, “On the norm of idempotents in $C^*$-algebras”, Rocky Mountaun J. Math., 34:2 (2004), 685–697 | DOI | MR | Zbl

[13] J. J. Koliha, “Range projections of idempotents in $C^*$-algebras”, Demonstratio Math., 34:1 (2001), 91–103 | MR | Zbl

[14] A. M. Bikchentaev, “O predstavlenii elementov algebry fon Neimana v vide konechnykh summ proizvedenii proektorov. III. Kommutatory v $C^*$-algebrakh”, Matem. sb., 199:4 (2008), 3–20 | DOI | MR | Zbl

[15] P. Khalmosh, Gilbertovo prostranstvo v zadachakh, Mir, M., 1970 | MR

[16] A. M. Bikchentaev, “Perestanovochnost proektorov i kharakterizatsiya sleda na algebrakh fon Neimana”, Sib. matem. zhurn., 51:6 (2010), 1228–1236 | MR | Zbl

[17] Yu. L. Shmulyan, “Operatornyi integral Khellingera”, Matem. sb., 49 (91):4 (1959), 381–430 | MR | Zbl

[18] T. Constantinescu, “Schur analysis of positive block-matrices. I”, Schur Methods in Operator Theory and Signal Processing, Oper. Theory Adv. Appl., 18, Birkhäuser Verlag, Basel, 1986, 191–206 | MR

[19] A. M. Bikchentaev, “K teorii $\tau$-izmerimykh operatorov, prisoedinennykh k polukonechnoi algebre fon Neimana”, Matem. zametki, 98:3 (2015), 337–348 | DOI | MR | Zbl

[20] M. Takesaki, Theory of Operator Algebras, Vol. I, Springer-Verlag, Berlin, 1979 | MR | Zbl

[21] L. T. Gardner, “An inequality characterizes the trace”, Canad. J. Math., 31:6 (1979), 1322–1328 | DOI | MR | Zbl

[22] O. E. Tikhonov, “Subadditivity inequalities in von Neumann algebras and characterization of tracial functionals”, Positivity, 9:2 (2005), 259–264 | DOI | MR | Zbl

[23] A. M. Bikchentaev, “Commutation of projections and characterization of traces on von Neumann algebras. III”, Internat. J. Theoret. Phys., 54:12 (2015), 4482–4493 | DOI | MR | Zbl

[24] A. M. Bikchentaev, “Neravenstvo dlya sleda na unitalnoi $C^*$-algebre”, Matem. zametki, 99:4 (2016), 483–488 | DOI | MR | Zbl