Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2019_105_4_a8, author = {V. L. Popov}, title = {On {Conjugacy} of {Stabilizers} of {Reductive} {Group} {Actions}}, journal = {Matemati\v{c}eskie zametki}, pages = {589--591}, publisher = {mathdoc}, volume = {105}, number = {4}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2019_105_4_a8/} }
V. L. Popov. On Conjugacy of Stabilizers of Reductive Group Actions. Matematičeskie zametki, Tome 105 (2019) no. 4, pp. 589-591. http://geodesic.mathdoc.fr/item/MZM_2019_105_4_a8/
[1] N. R. Wallach, Principal Orbit Type Theorems for Reductive Algebraic Group Actions and the Kempf–Ness Theorem, 2018, arXiv: 1811.07195v1
[2] A. Borel, Linear Algebraic Groups, Springer, New York, 1991 | MR | Zbl
[3] V. L. Popov, E. B. Vinberg, “Invariant theory”, Algebraic Geometry IV, Encyclopaedia of Math. Sci., 55, Springer-Verlag, Berlin, 1994, 123–278 | DOI
[4] R. W. Richardson, “Principal orbit types for algebraic transformation spaces in characteristic zero”, Invent. Math., 16 (1972), 6–14 | DOI | MR | Zbl
[5] D. Luna, “Slices étales”, Bull. Soc. Math. France, 33 (1973), 81–105 | MR | Zbl
[6] V. L. Popov, “Kriterii stabilnosti deistviya poluprostoi gruppy na faktorialnom mnogoobrazii”, Izv. AN SSSR. Ser. matem., 34:3 (1970), 523–531 | MR | Zbl