On Conjugacy of Stabilizers of Reductive Group Actions
Matematičeskie zametki, Tome 105 (2019) no. 4, pp. 589-591.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that the main result of [1], is a special case of a more general statement, which can be deduced, using a short argument, from the classical Richardson and Luna theorems.
Keywords: reductive algebraic group, stabilizer
Mots-clés : action, conjugacy.
@article{MZM_2019_105_4_a8,
     author = {V. L. Popov},
     title = {On {Conjugacy} of {Stabilizers} of {Reductive} {Group} {Actions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {589--591},
     publisher = {mathdoc},
     volume = {105},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_105_4_a8/}
}
TY  - JOUR
AU  - V. L. Popov
TI  - On Conjugacy of Stabilizers of Reductive Group Actions
JO  - Matematičeskie zametki
PY  - 2019
SP  - 589
EP  - 591
VL  - 105
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_105_4_a8/
LA  - ru
ID  - MZM_2019_105_4_a8
ER  - 
%0 Journal Article
%A V. L. Popov
%T On Conjugacy of Stabilizers of Reductive Group Actions
%J Matematičeskie zametki
%D 2019
%P 589-591
%V 105
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_105_4_a8/
%G ru
%F MZM_2019_105_4_a8
V. L. Popov. On Conjugacy of Stabilizers of Reductive Group Actions. Matematičeskie zametki, Tome 105 (2019) no. 4, pp. 589-591. http://geodesic.mathdoc.fr/item/MZM_2019_105_4_a8/

[1] N. R. Wallach, Principal Orbit Type Theorems for Reductive Algebraic Group Actions and the Kempf–Ness Theorem, 2018, arXiv: 1811.07195v1

[2] A. Borel, Linear Algebraic Groups, Springer, New York, 1991 | MR | Zbl

[3] V. L. Popov, E. B. Vinberg, “Invariant theory”, Algebraic Geometry IV, Encyclopaedia of Math. Sci., 55, Springer-Verlag, Berlin, 1994, 123–278 | DOI

[4] R. W. Richardson, “Principal orbit types for algebraic transformation spaces in characteristic zero”, Invent. Math., 16 (1972), 6–14 | DOI | MR | Zbl

[5] D. Luna, “Slices étales”, Bull. Soc. Math. France, 33 (1973), 81–105 | MR | Zbl

[6] V. L. Popov, “Kriterii stabilnosti deistviya poluprostoi gruppy na faktorialnom mnogoobrazii”, Izv. AN SSSR. Ser. matem., 34:3 (1970), 523–531 | MR | Zbl