A Sobolev Orthogonal System of Functions Generated by a Walsh System
Matematičeskie zametki, Tome 105 (2019) no. 4, pp. 545-552.

Voir la notice de l'article provenant de la source Math-Net.Ru

Properties of functions from the Sobolev orthogonal system $\mathfrak W_r$ generated by the Walsh system are studied. In particular, recurrence relations for functions from $\mathfrak W_1$ are obtained. The uniform convergence of Fourier series in the system $\mathfrak W_r$ to functions $f$ from the Sobolev spaces $W^r_{L^p}$, $p\ge 1$, $r=1,2,\dots$ is proved.
Keywords: Sobolev orthogonality, Walsh system, recurrence relation.
Mots-clés : uniform convergence
@article{MZM_2019_105_4_a5,
     author = {M. G. Magomed-Kasumov},
     title = {A {Sobolev} {Orthogonal} {System} of {Functions} {Generated} by a {Walsh} {System}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {545--552},
     publisher = {mathdoc},
     volume = {105},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_105_4_a5/}
}
TY  - JOUR
AU  - M. G. Magomed-Kasumov
TI  - A Sobolev Orthogonal System of Functions Generated by a Walsh System
JO  - Matematičeskie zametki
PY  - 2019
SP  - 545
EP  - 552
VL  - 105
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_105_4_a5/
LA  - ru
ID  - MZM_2019_105_4_a5
ER  - 
%0 Journal Article
%A M. G. Magomed-Kasumov
%T A Sobolev Orthogonal System of Functions Generated by a Walsh System
%J Matematičeskie zametki
%D 2019
%P 545-552
%V 105
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_105_4_a5/
%G ru
%F MZM_2019_105_4_a5
M. G. Magomed-Kasumov. A Sobolev Orthogonal System of Functions Generated by a Walsh System. Matematičeskie zametki, Tome 105 (2019) no. 4, pp. 545-552. http://geodesic.mathdoc.fr/item/MZM_2019_105_4_a5/

[1] B. I. Golubov, A. V. Efimov, V. A. Skvortsov, Ryady i preobrazovaniya Uolsha. Teoriya i primeneniya, Nauka, M., 1987 | MR | Zbl

[2] I. I. Sharapudinov, “Sistemy funktsii, ortogonalnye po Sobolevu, assotsiirovannye s ortogonalnoi sistemoi”, Izv. RAN. Ser. matem., 82:1 (2018), 225–258 | DOI | Zbl

[3] I. I. Sharapudinov, “Approksimativnye svoistva ryadov Fure po mnogochlenam, ortogonalnym po Sobolevu s vesom Yakobi i diskretnymi massami”, Matem. zametki, 101:4 (2017), 611–629 | DOI | MR | Zbl

[4] I. I. Sharapudinov, “Spetsialnye ryady po polinomam Lagerra i ikh approksimativnye svoistva”, Sib. matem. zhurn., 58:2 (2017), 440–467 | DOI | Zbl

[5] I. I. Sharapudinov, M. G. Magomed-Kasumov, S. R. Magomedov, “Polinomy, ortogonalnye po Sobolevu, assotsiirovannye s polinomami Chebysheva pervogo roda”, Dagestanskie elektronnye matematicheskie izvestiya, 2015, no. 4, 1–14 | DOI

[6] I. I. Sharapudinov, T. I. Sharapudinov, “Polinomy, ortogonalnye po Sobolevu, porozhdennye mnogochlenami Chebysheva, ortogonalnymi na setke”, Izv. vuzov. Matem., 2017, no. 8, 67–79 | Zbl

[7] I. I. Sharapudinov, Z. D. Gadzhieva, “Polinomy, ortogonalnye po Sobolevu, porozhdennye mnogochlenami Meiksnera”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 16:3 (2016), 310–321 | DOI | MR | Zbl

[8] R. M. Gadzhimirzaev, “Ryady Fure po polinomam Meiksnera, ortogonalnym po Sobolevu”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 16:4 (2016), 388–395 | DOI | MR

[9] G. M. Fikhtengolts, Kurs differentsialnogo i integralnogo ischisleniya, T. 2, Fizmatlit, M., 2001