Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2019_105_4_a0, author = {S. Albeverio and A. K. Motovilov}, title = {Solvability of the {Operator} {Riccati} {Equation} in the {Feshbach} {Case}}, journal = {Matemati\v{c}eskie zametki}, pages = {483--506}, publisher = {mathdoc}, volume = {105}, number = {4}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2019_105_4_a0/} }
S. Albeverio; A. K. Motovilov. Solvability of the Operator Riccati Equation in the Feshbach Case. Matematičeskie zametki, Tome 105 (2019) no. 4, pp. 483-506. http://geodesic.mathdoc.fr/item/MZM_2019_105_4_a0/
[1] S. Albeverio, K. A. Makarov, A. K. Motovilov, “Graph subspaces and the spectral shift function”, Canad. J. Math., 55:3 (2003), 449–503 | DOI | MR | Zbl
[2] K. A. Makarov, S. Schmitz, A. Seelmann, “On invariant graph subspaces”, Integral Equations Operator Theory, 85:3 (2016), 399–425 | DOI | MR | Zbl
[3] V. Kostrykin, K. A. Makarov, A. K. Motovilov, “Existence and uniqueness of solutions to the operator Riccati equation. A geometric approach”, Advances in Differential Equations and Mathematical Physics, Contemp. Math., 327, Amer. Math. Soc., Providence, RI, 2003, 181–198 | DOI | MR | Zbl
[4] S. Albeverio, A. K. Motovilov, “Sharpening the norm bound in the subspace perturbation theory”, Complex Anal. Oper. Theory, 7:4 (2013), 1389–1416 | DOI | MR | Zbl
[5] A. Seelmann, “Notes on the subspace perturbation problem for off-diagonal perturbations”, Proc. Amer. Math. Soc., 144:9 (2016), 3825–3832 | DOI | MR | Zbl
[6] A. Seelmann, “On an estimate in the subspace perturbation problem”, J. Anal. Math., 135:1 (2018), 313–343 | MR | Zbl
[7] S. Okubo, “Diagonalization of Hamiltonian and Tamm-Dancoff equation”, Progr. Theoret. Phys., 12 (1954), 603–622 | DOI | MR | Zbl
[8] L. L. Foldy, S. A. Wouthuysen, “On the Dirac theory of spin 1/2 particles and its non-relativistic limit”, Phys. Rev., 78 (1950), 29–36 | DOI | Zbl
[9] A. S. Markus, V. I. Matsaev, “K spektralnoi teorii golomorfnykh operator-funktsii v gilbertovom prostranstve”, Funkts. analiz i ego pril., 9:1 (1975), 76–77 | MR | Zbl
[10] V. Adamjan, H. Langer, “Spectral properties of a class of operator-valued functions”, J. Operator Theory, 33:2 (1995), 259–277 | MR | Zbl
[11] V. Adamyan, H. Langer, C. Tretter, “Existence and uniqueness of contractive solutions of some Riccati equations”, J. Funct. Anal., 179:2 (2001), 448–473 | DOI | MR
[12] V. M. Adamyan, H. Langer, R. Mennicken, J. Saurer, “Spectral components of selfadjoint block operator matrices with unbounded entries”, Math. Nachr., 178 (1996), 43–80 | DOI | MR | Zbl
[13] H. Langer, A. Markus, V. Matsaev, C. Tretter, “A new concept for block operator matrices: the quadratic numerical range”, Linear Algebra Appl., 330:1-3 (2001), 89–112 | DOI | MR | Zbl
[14] R. Mennicken, A. A. Shkalikov, “Spectral decomposition of symmetric operator matrices”, Math. Nachr., 179 (1996), 259–273 | DOI | MR | Zbl
[15] A. K. Motovilov, “Removal of the resolvent-like energy dependence from interactions and invariant subspaces of a total Hamiltonian”, J. Math. Phys., 36:12 (1995), 6647–6664 | DOI | MR | Zbl
[16] V. Kostrykin, K. A. Makarov, A. K. Motovilov, “A generalization of the $\tan 2\Theta$ theorem”, Current trends in Operator Theory and Its Applications, Oper. Theory Adv. Appl., 149, Birkhäuser, Basel, 2004, 349–372 | MR | Zbl
[17] V. Kostrykin, K. A. Makarov, A. K. Motovilov, “On the existence of solutions to the operator Riccati equation and the $\tan\Theta$ theorem”, Integral Equations Operator Theory, 51:1 (2005), 121–140 | DOI | MR | Zbl
[18] C. Davis, W. M. Kahan, “The rotation of eigenvectors by a perturbation. III”, SIAM J. Numer. Anal., 7 (1970), 1–46 | DOI | MR | Zbl
[19] S. Albeverio, A. K. Motovilov, “The a priori $\tan\Theta$ theorem for spectral subspaces”, Integral Equations Operator Theory, 73:3 (2012), 413–430 | DOI | MR | Zbl
[20] A. K. Motovilov, A. V. Selin, “Some sharp norm estimates in the subspace perturbation problem”, Integral Equations Operator Theory, 56:4 (2006), 511–542 | DOI | MR | Zbl
[21] S. Albeverio, A. K. Motovilov, “Bounds on variation of the spectrum and spectral subspaces of a few-body Hamiltonian”, Procerdings of International Conference “Nuclear Theory in the Supercomputing Era – 2014”, Pacific National University, Khabarovsk, 2016, 98–106, arXiv: 1410.3231
[22] S. Albeverio, A. K. Motovilov, A. A. Shkalikov, “Bounds on variation of spectral subspaces under $J$-self-adjoint perturbations”, Integral Equations Operator Theory, 64:4 (2009), 455–486 | DOI | MR | Zbl
[23] S. Albeverio, A. K. Motovilov, C. Tretter, “Bounds on the spectrum and reducing subspaces of a $J$-self-adjoint operator”, Indiana Univ. Math. J., 59:5 (2010), 1737–1776 | DOI | MR | Zbl
[24] K. Veselić, “On spectral properties of a class of $J$-selfadjoint operators. I”, Glasnik Mat. Ser. III, 7 (1972), 229–248 | MR | Zbl
[25] K. Veselić, “On spectral properties of a class of $J$-selfadjoint operators. II”, Glasnik Mat. Ser. III, 7 (1972), 249–254 | MR | Zbl
[26] S. Albeverio, A. K. Motovilov, “Operatornye integraly Stiltesa po spektralnoi mere i resheniya nekotorykh operatornykh uravnenii”, Tr. MMO, 72, no. 1, MTsNMO, M., 2011, 63–103 | MR | Zbl
[27] R. Mennicken, A. K. Motovilov, “Operator interpretation of resonances arising in spectral problems for $2\times 2$ operator matrices”, Math. Nachr., 201 (1999), 117–181 | DOI | MR | Zbl
[28] H. Feschbach, “Unified theory of nuclear reactions”, Ann. Phys., 5:4 (1958), 357–390 | DOI | MR
[29] V. Hardt, R. Mennicken, A. K. Motovilov, “Factorization theorem for the transfer function associated with a $2\times2$ operator matrix having unbounded couplings”, J. Operator Theory, 48:1 (2002), 187–226 | MR | Zbl
[30] V. Hardt, R. Mennicken, A. K. Motovilov, “Factorization theorem for the transfer function associated with an unbounded non-self-adjoint $2\times2$ operator matrix”, Singular Integral Operators, Factorization and Applications, Oper. Theory Adv. Appl., 142, Birkhäuser, Basel, 2003, 117–132 | MR | Zbl
[31] S. Albeverio, A. K. Motovilov, “On invariant graph subspaces of a $J$-self-adjoint operator in the Feshbach case”, Math. Notes, 100:6 (2016), 761–773 | DOI | MR | Zbl
[32] K. O. Friedrichs, “On the perturbation of continuous spectra”, Comm. Pure Appl. Math., 1 (1948), 361–406 | DOI | MR | Zbl
[33] G. Hagen, J. S. Vaagen, M. Hjorth-Jensen, “The contour deformation method in momentum space, applied to subatomic physics”, J. Phys. A. Math. Gen., 37:38 (2004), 8991–9021 | DOI | MR | Zbl
[34] E. Balslev, J. M. Combes, “Spectral properties of many-body Schrödinger operators with dilatation-analytic interactions”, Comm. Math. Phys., 22 (1971), 280–294 | DOI | MR | Zbl
[35] C. Lovelace, “Practical theory of three-particle states. I. Nonrealtivistic”, Phys. Rev. B, 135 (1964), 1225–1249 | DOI | MR
[36] M. Reed, B. Simon, Methods of Modern Mathematical Physics. IY. Analysis of Operators, Academic Press, London, 1978 | MR
[37] V. Hardt, A. Konstantinov, R. Mennicken, “On the spectrum of the product of closed operators”, Math. Nachr., 215 (2000), 91–102 | MR | Zbl
[38] M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Lan, SPb., 2010