Solvability of the Operator Riccati Equation in the Feshbach Case
Matematičeskie zametki, Tome 105 (2019) no. 4, pp. 483-506.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $L$ be a bounded $2\times2$ block operator matrix whose main-diagonal entries are self-adjoint operators. It is assumed that the spectrum of one of these entries is absolutely continuous, being presented by a single finite band, and the spectrum of the other main-diagonal entry is entirely contained in this band. We establish conditions under which the operator matrix $L$ admits a complex deformation and, simultaneously, the operator Riccati equations associated with the deformed $L$ possess bounded solutions. The same conditions also ensure a Markus–Matsaev-type factorization of one of the initial Schur complements analytically continued onto the unphysical sheet(s) of the complex plane of the spectral parameter. We prove that the operator roots of this Schur complement are explicitly expressed through the respective solutions to the deformed Riccati equations.
Keywords: operator Riccati equation, Feshbach case, Friedrichs model, graph subspace, resonance, unphysical sheet.
@article{MZM_2019_105_4_a0,
     author = {S. Albeverio and A. K. Motovilov},
     title = {Solvability of the {Operator} {Riccati} {Equation} in the {Feshbach} {Case}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {483--506},
     publisher = {mathdoc},
     volume = {105},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_105_4_a0/}
}
TY  - JOUR
AU  - S. Albeverio
AU  - A. K. Motovilov
TI  - Solvability of the Operator Riccati Equation in the Feshbach Case
JO  - Matematičeskie zametki
PY  - 2019
SP  - 483
EP  - 506
VL  - 105
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_105_4_a0/
LA  - ru
ID  - MZM_2019_105_4_a0
ER  - 
%0 Journal Article
%A S. Albeverio
%A A. K. Motovilov
%T Solvability of the Operator Riccati Equation in the Feshbach Case
%J Matematičeskie zametki
%D 2019
%P 483-506
%V 105
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_105_4_a0/
%G ru
%F MZM_2019_105_4_a0
S. Albeverio; A. K. Motovilov. Solvability of the Operator Riccati Equation in the Feshbach Case. Matematičeskie zametki, Tome 105 (2019) no. 4, pp. 483-506. http://geodesic.mathdoc.fr/item/MZM_2019_105_4_a0/

[1] S. Albeverio, K. A. Makarov, A. K. Motovilov, “Graph subspaces and the spectral shift function”, Canad. J. Math., 55:3 (2003), 449–503 | DOI | MR | Zbl

[2] K. A. Makarov, S. Schmitz, A. Seelmann, “On invariant graph subspaces”, Integral Equations Operator Theory, 85:3 (2016), 399–425 | DOI | MR | Zbl

[3] V. Kostrykin, K. A. Makarov, A. K. Motovilov, “Existence and uniqueness of solutions to the operator Riccati equation. A geometric approach”, Advances in Differential Equations and Mathematical Physics, Contemp. Math., 327, Amer. Math. Soc., Providence, RI, 2003, 181–198 | DOI | MR | Zbl

[4] S. Albeverio, A. K. Motovilov, “Sharpening the norm bound in the subspace perturbation theory”, Complex Anal. Oper. Theory, 7:4 (2013), 1389–1416 | DOI | MR | Zbl

[5] A. Seelmann, “Notes on the subspace perturbation problem for off-diagonal perturbations”, Proc. Amer. Math. Soc., 144:9 (2016), 3825–3832 | DOI | MR | Zbl

[6] A. Seelmann, “On an estimate in the subspace perturbation problem”, J. Anal. Math., 135:1 (2018), 313–343 | MR | Zbl

[7] S. Okubo, “Diagonalization of Hamiltonian and Tamm-Dancoff equation”, Progr. Theoret. Phys., 12 (1954), 603–622 | DOI | MR | Zbl

[8] L. L. Foldy, S. A. Wouthuysen, “On the Dirac theory of spin 1/2 particles and its non-relativistic limit”, Phys. Rev., 78 (1950), 29–36 | DOI | Zbl

[9] A. S. Markus, V. I. Matsaev, “K spektralnoi teorii golomorfnykh operator-funktsii v gilbertovom prostranstve”, Funkts. analiz i ego pril., 9:1 (1975), 76–77 | MR | Zbl

[10] V. Adamjan, H. Langer, “Spectral properties of a class of operator-valued functions”, J. Operator Theory, 33:2 (1995), 259–277 | MR | Zbl

[11] V. Adamyan, H. Langer, C. Tretter, “Existence and uniqueness of contractive solutions of some Riccati equations”, J. Funct. Anal., 179:2 (2001), 448–473 | DOI | MR

[12] V. M. Adamyan, H. Langer, R. Mennicken, J. Saurer, “Spectral components of selfadjoint block operator matrices with unbounded entries”, Math. Nachr., 178 (1996), 43–80 | DOI | MR | Zbl

[13] H. Langer, A. Markus, V. Matsaev, C. Tretter, “A new concept for block operator matrices: the quadratic numerical range”, Linear Algebra Appl., 330:1-3 (2001), 89–112 | DOI | MR | Zbl

[14] R. Mennicken, A. A. Shkalikov, “Spectral decomposition of symmetric operator matrices”, Math. Nachr., 179 (1996), 259–273 | DOI | MR | Zbl

[15] A. K. Motovilov, “Removal of the resolvent-like energy dependence from interactions and invariant subspaces of a total Hamiltonian”, J. Math. Phys., 36:12 (1995), 6647–6664 | DOI | MR | Zbl

[16] V. Kostrykin, K. A. Makarov, A. K. Motovilov, “A generalization of the $\tan 2\Theta$ theorem”, Current trends in Operator Theory and Its Applications, Oper. Theory Adv. Appl., 149, Birkhäuser, Basel, 2004, 349–372 | MR | Zbl

[17] V. Kostrykin, K. A. Makarov, A. K. Motovilov, “On the existence of solutions to the operator Riccati equation and the $\tan\Theta$ theorem”, Integral Equations Operator Theory, 51:1 (2005), 121–140 | DOI | MR | Zbl

[18] C. Davis, W. M. Kahan, “The rotation of eigenvectors by a perturbation. III”, SIAM J. Numer. Anal., 7 (1970), 1–46 | DOI | MR | Zbl

[19] S. Albeverio, A. K. Motovilov, “The a priori $\tan\Theta$ theorem for spectral subspaces”, Integral Equations Operator Theory, 73:3 (2012), 413–430 | DOI | MR | Zbl

[20] A. K. Motovilov, A. V. Selin, “Some sharp norm estimates in the subspace perturbation problem”, Integral Equations Operator Theory, 56:4 (2006), 511–542 | DOI | MR | Zbl

[21] S. Albeverio, A. K. Motovilov, “Bounds on variation of the spectrum and spectral subspaces of a few-body Hamiltonian”, Procerdings of International Conference “Nuclear Theory in the Supercomputing Era – 2014”, Pacific National University, Khabarovsk, 2016, 98–106, arXiv: 1410.3231

[22] S. Albeverio, A. K. Motovilov, A. A. Shkalikov, “Bounds on variation of spectral subspaces under $J$-self-adjoint perturbations”, Integral Equations Operator Theory, 64:4 (2009), 455–486 | DOI | MR | Zbl

[23] S. Albeverio, A. K. Motovilov, C. Tretter, “Bounds on the spectrum and reducing subspaces of a $J$-self-adjoint operator”, Indiana Univ. Math. J., 59:5 (2010), 1737–1776 | DOI | MR | Zbl

[24] K. Veselić, “On spectral properties of a class of $J$-selfadjoint operators. I”, Glasnik Mat. Ser. III, 7 (1972), 229–248 | MR | Zbl

[25] K. Veselić, “On spectral properties of a class of $J$-selfadjoint operators. II”, Glasnik Mat. Ser. III, 7 (1972), 249–254 | MR | Zbl

[26] S. Albeverio, A. K. Motovilov, “Operatornye integraly Stiltesa po spektralnoi mere i resheniya nekotorykh operatornykh uravnenii”, Tr. MMO, 72, no. 1, MTsNMO, M., 2011, 63–103 | MR | Zbl

[27] R. Mennicken, A. K. Motovilov, “Operator interpretation of resonances arising in spectral problems for $2\times 2$ operator matrices”, Math. Nachr., 201 (1999), 117–181 | DOI | MR | Zbl

[28] H. Feschbach, “Unified theory of nuclear reactions”, Ann. Phys., 5:4 (1958), 357–390 | DOI | MR

[29] V. Hardt, R. Mennicken, A. K. Motovilov, “Factorization theorem for the transfer function associated with a $2\times2$ operator matrix having unbounded couplings”, J. Operator Theory, 48:1 (2002), 187–226 | MR | Zbl

[30] V. Hardt, R. Mennicken, A. K. Motovilov, “Factorization theorem for the transfer function associated with an unbounded non-self-adjoint $2\times2$ operator matrix”, Singular Integral Operators, Factorization and Applications, Oper. Theory Adv. Appl., 142, Birkhäuser, Basel, 2003, 117–132 | MR | Zbl

[31] S. Albeverio, A. K. Motovilov, “On invariant graph subspaces of a $J$-self-adjoint operator in the Feshbach case”, Math. Notes, 100:6 (2016), 761–773 | DOI | MR | Zbl

[32] K. O. Friedrichs, “On the perturbation of continuous spectra”, Comm. Pure Appl. Math., 1 (1948), 361–406 | DOI | MR | Zbl

[33] G. Hagen, J. S. Vaagen, M. Hjorth-Jensen, “The contour deformation method in momentum space, applied to subatomic physics”, J. Phys. A. Math. Gen., 37:38 (2004), 8991–9021 | DOI | MR | Zbl

[34] E. Balslev, J. M. Combes, “Spectral properties of many-body Schrödinger operators with dilatation-analytic interactions”, Comm. Math. Phys., 22 (1971), 280–294 | DOI | MR | Zbl

[35] C. Lovelace, “Practical theory of three-particle states. I. Nonrealtivistic”, Phys. Rev. B, 135 (1964), 1225–1249 | DOI | MR

[36] M. Reed, B. Simon, Methods of Modern Mathematical Physics. IY. Analysis of Operators, Academic Press, London, 1978 | MR

[37] V. Hardt, A. Konstantinov, R. Mennicken, “On the spectrum of the product of closed operators”, Math. Nachr., 215 (2000), 91–102 | MR | Zbl

[38] M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Lan, SPb., 2010