Definability of Completely Decomposable Torsion-Free Abelian Groups by Endomorphism Semigroups and Homomorphism Groups
Matematičeskie zametki, Tome 105 (2019) no. 3, pp. 421-427

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $C$ be an Abelian group. A class $X$ of Abelian groups is called a ${}_CE^\bullet H$-class if, for every groups $A,B\in X$, the isomorphisms $E^\bullet(A)\cong E^\bullet(B)$ and $\operatorname{Hom}(C,A)\cong\operatorname{Hom}(C,B)$ imply the isomorphism $A\cong B$. In the paper, necessary and sufficient conditions on a completely decomposable torsion-free Abelian group $C$ are described under which a given class of torsion-free Abelian groups is a ${}_CE^\bullet H$-class.
Keywords: completely decomposable Abelian group, endomorphism semigroup, definability of Abelian groups.
Mots-clés : homomorphism group
@article{MZM_2019_105_3_a8,
     author = {T. A. Pushkova and A. M. Sebel'din},
     title = {Definability of {Completely} {Decomposable} {Torsion-Free} {Abelian} {Groups} by {Endomorphism} {Semigroups} and {Homomorphism} {Groups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {421--427},
     publisher = {mathdoc},
     volume = {105},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_105_3_a8/}
}
TY  - JOUR
AU  - T. A. Pushkova
AU  - A. M. Sebel'din
TI  - Definability of Completely Decomposable Torsion-Free Abelian Groups by Endomorphism Semigroups and Homomorphism Groups
JO  - Matematičeskie zametki
PY  - 2019
SP  - 421
EP  - 427
VL  - 105
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_105_3_a8/
LA  - ru
ID  - MZM_2019_105_3_a8
ER  - 
%0 Journal Article
%A T. A. Pushkova
%A A. M. Sebel'din
%T Definability of Completely Decomposable Torsion-Free Abelian Groups by Endomorphism Semigroups and Homomorphism Groups
%J Matematičeskie zametki
%D 2019
%P 421-427
%V 105
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_105_3_a8/
%G ru
%F MZM_2019_105_3_a8
T. A. Pushkova; A. M. Sebel'din. Definability of Completely Decomposable Torsion-Free Abelian Groups by Endomorphism Semigroups and Homomorphism Groups. Matematičeskie zametki, Tome 105 (2019) no. 3, pp. 421-427. http://geodesic.mathdoc.fr/item/MZM_2019_105_3_a8/