Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2019_105_3_a8, author = {T. A. Pushkova and A. M. Sebel'din}, title = {Definability of {Completely} {Decomposable} {Torsion-Free} {Abelian} {Groups} by {Endomorphism} {Semigroups} and {Homomorphism} {Groups}}, journal = {Matemati\v{c}eskie zametki}, pages = {421--427}, publisher = {mathdoc}, volume = {105}, number = {3}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2019_105_3_a8/} }
TY - JOUR AU - T. A. Pushkova AU - A. M. Sebel'din TI - Definability of Completely Decomposable Torsion-Free Abelian Groups by Endomorphism Semigroups and Homomorphism Groups JO - Matematičeskie zametki PY - 2019 SP - 421 EP - 427 VL - 105 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2019_105_3_a8/ LA - ru ID - MZM_2019_105_3_a8 ER -
%0 Journal Article %A T. A. Pushkova %A A. M. Sebel'din %T Definability of Completely Decomposable Torsion-Free Abelian Groups by Endomorphism Semigroups and Homomorphism Groups %J Matematičeskie zametki %D 2019 %P 421-427 %V 105 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2019_105_3_a8/ %G ru %F MZM_2019_105_3_a8
T. A. Pushkova; A. M. Sebel'din. Definability of Completely Decomposable Torsion-Free Abelian Groups by Endomorphism Semigroups and Homomorphism Groups. Matematičeskie zametki, Tome 105 (2019) no. 3, pp. 421-427. http://geodesic.mathdoc.fr/item/MZM_2019_105_3_a8/
[1] R. Baer, “Automorphism rings of primary Abelian operator groups”, Ann. of Math. (2), 44 (1943), 192–227 | MR | Zbl
[2] I. Kaplansky, “Some results on Abelian groups”, Proc. Nat. Acad. Sci. USA., 38 (1952), 538–540 | MR | Zbl
[3] P. Puusemp, “Ob opredelyaemosti periodicheskikh abelevykh grupp svoei polugruppoi endomorfizmov v klasse vsekh periodicheskikh abelevykh grupp.”, Izv. AN EstSSR. Ser. Fiz., matem., 29:3 (1980), 246–253 | MR | Zbl
[4] A. M. Sebeldin, Opredelyaemost abelevykh grupp, Palmarium Acad. Publ., 2012
[5] I. Z. Golubchik, A. V. Mikhalëv, “Izomorfizmy polnoi lineinoi gruppy nad assotsiativnym koltsom”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1983, no. 3, 61–72 | MR | Zbl
[6] L. Fuks, Beskonechnye abelevy gruppy, T. 1, Mir, M., 1974 | MR | Zbl
[7] A. M. Sebeldin, “Ob opredelyaemosti abelevykh grupp svoimi polugruppami endomorfizmov”, Abelevy gruppy i moduli, 10, Tomskii gos. un-t, Tomsk, 1991, 125–133 | MR
[8] A. M. Sebeldin, “Usloviya izomorfizma vpolne razlozhimykh abelevykh grupp bez krucheniya s izomorfnymi koltsami endomorfizmov”, Matem. zametki, 11:4 (1972), 403–408 | MR | Zbl
[9] O. V. Lyubimtsev, “Sepapabelnye abelevy gpuppy bez kpucheniya s $UA-$ koltsami endomopfizmov”, Fundament. i prikl. matem., 4:4 (1968), 1419–1422
[10] R. Baer, “Types of elements and characteristic subgroups of abelian groups”, Proc. London Math. Soc. (2), 39:7 (1935), 481–514 | DOI | MR
[11] A. M. Sebeldin, “Gruppy gomomorfizmov vpolne razlozhimykh abelevykh grupp bez krucheniya”, Izv. vuzov. Matem., 1973, no. 7, 77–84 | MR | Zbl