Definability of Completely Decomposable Torsion-Free Abelian Groups by Endomorphism Semigroups and Homomorphism Groups
Matematičeskie zametki, Tome 105 (2019) no. 3, pp. 421-427
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $C$ be an Abelian group. A class $X$ of Abelian groups is called a ${}_CE^\bullet H$-class if, for every groups $A,B\in X$, the isomorphisms $E^\bullet(A)\cong E^\bullet(B)$ and $\operatorname{Hom}(C,A)\cong\operatorname{Hom}(C,B)$ imply the isomorphism $A\cong B$.
In the paper, necessary and sufficient conditions on a completely decomposable torsion-free Abelian group $C$ are described under which a given class of torsion-free Abelian groups is a ${}_CE^\bullet H$-class.
Keywords:
completely decomposable Abelian group, endomorphism semigroup, definability of Abelian groups.
Mots-clés : homomorphism group
Mots-clés : homomorphism group
@article{MZM_2019_105_3_a8,
author = {T. A. Pushkova and A. M. Sebel'din},
title = {Definability of {Completely} {Decomposable} {Torsion-Free} {Abelian} {Groups} by {Endomorphism} {Semigroups} and {Homomorphism} {Groups}},
journal = {Matemati\v{c}eskie zametki},
pages = {421--427},
publisher = {mathdoc},
volume = {105},
number = {3},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2019_105_3_a8/}
}
TY - JOUR AU - T. A. Pushkova AU - A. M. Sebel'din TI - Definability of Completely Decomposable Torsion-Free Abelian Groups by Endomorphism Semigroups and Homomorphism Groups JO - Matematičeskie zametki PY - 2019 SP - 421 EP - 427 VL - 105 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2019_105_3_a8/ LA - ru ID - MZM_2019_105_3_a8 ER -
%0 Journal Article %A T. A. Pushkova %A A. M. Sebel'din %T Definability of Completely Decomposable Torsion-Free Abelian Groups by Endomorphism Semigroups and Homomorphism Groups %J Matematičeskie zametki %D 2019 %P 421-427 %V 105 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2019_105_3_a8/ %G ru %F MZM_2019_105_3_a8
T. A. Pushkova; A. M. Sebel'din. Definability of Completely Decomposable Torsion-Free Abelian Groups by Endomorphism Semigroups and Homomorphism Groups. Matematičeskie zametki, Tome 105 (2019) no. 3, pp. 421-427. http://geodesic.mathdoc.fr/item/MZM_2019_105_3_a8/