Definability of Completely Decomposable Torsion-Free Abelian Groups by Endomorphism Semigroups and Homomorphism Groups
Matematičeskie zametki, Tome 105 (2019) no. 3, pp. 421-427.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $C$ be an Abelian group. A class $X$ of Abelian groups is called a ${}_CE^\bullet H$-class if, for every groups $A,B\in X$, the isomorphisms $E^\bullet(A)\cong E^\bullet(B)$ and $\operatorname{Hom}(C,A)\cong\operatorname{Hom}(C,B)$ imply the isomorphism $A\cong B$. In the paper, necessary and sufficient conditions on a completely decomposable torsion-free Abelian group $C$ are described under which a given class of torsion-free Abelian groups is a ${}_CE^\bullet H$-class.
Keywords: completely decomposable Abelian group, endomorphism semigroup, definability of Abelian groups.
Mots-clés : homomorphism group
@article{MZM_2019_105_3_a8,
     author = {T. A. Pushkova and A. M. Sebel'din},
     title = {Definability of {Completely} {Decomposable} {Torsion-Free} {Abelian} {Groups} by {Endomorphism} {Semigroups} and {Homomorphism} {Groups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {421--427},
     publisher = {mathdoc},
     volume = {105},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_105_3_a8/}
}
TY  - JOUR
AU  - T. A. Pushkova
AU  - A. M. Sebel'din
TI  - Definability of Completely Decomposable Torsion-Free Abelian Groups by Endomorphism Semigroups and Homomorphism Groups
JO  - Matematičeskie zametki
PY  - 2019
SP  - 421
EP  - 427
VL  - 105
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_105_3_a8/
LA  - ru
ID  - MZM_2019_105_3_a8
ER  - 
%0 Journal Article
%A T. A. Pushkova
%A A. M. Sebel'din
%T Definability of Completely Decomposable Torsion-Free Abelian Groups by Endomorphism Semigroups and Homomorphism Groups
%J Matematičeskie zametki
%D 2019
%P 421-427
%V 105
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_105_3_a8/
%G ru
%F MZM_2019_105_3_a8
T. A. Pushkova; A. M. Sebel'din. Definability of Completely Decomposable Torsion-Free Abelian Groups by Endomorphism Semigroups and Homomorphism Groups. Matematičeskie zametki, Tome 105 (2019) no. 3, pp. 421-427. http://geodesic.mathdoc.fr/item/MZM_2019_105_3_a8/

[1] R. Baer, “Automorphism rings of primary Abelian operator groups”, Ann. of Math. (2), 44 (1943), 192–227 | MR | Zbl

[2] I. Kaplansky, “Some results on Abelian groups”, Proc. Nat. Acad. Sci. USA., 38 (1952), 538–540 | MR | Zbl

[3] P. Puusemp, “Ob opredelyaemosti periodicheskikh abelevykh grupp svoei polugruppoi endomorfizmov v klasse vsekh periodicheskikh abelevykh grupp.”, Izv. AN EstSSR. Ser. Fiz., matem., 29:3 (1980), 246–253 | MR | Zbl

[4] A. M. Sebeldin, Opredelyaemost abelevykh grupp, Palmarium Acad. Publ., 2012

[5] I. Z. Golubchik, A. V. Mikhalëv, “Izomorfizmy polnoi lineinoi gruppy nad assotsiativnym koltsom”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1983, no. 3, 61–72 | MR | Zbl

[6] L. Fuks, Beskonechnye abelevy gruppy, T. 1, Mir, M., 1974 | MR | Zbl

[7] A. M. Sebeldin, “Ob opredelyaemosti abelevykh grupp svoimi polugruppami endomorfizmov”, Abelevy gruppy i moduli, 10, Tomskii gos. un-t, Tomsk, 1991, 125–133 | MR

[8] A. M. Sebeldin, “Usloviya izomorfizma vpolne razlozhimykh abelevykh grupp bez krucheniya s izomorfnymi koltsami endomorfizmov”, Matem. zametki, 11:4 (1972), 403–408 | MR | Zbl

[9] O. V. Lyubimtsev, “Sepapabelnye abelevy gpuppy bez kpucheniya s $UA-$ koltsami endomopfizmov”, Fundament. i prikl. matem., 4:4 (1968), 1419–1422

[10] R. Baer, “Types of elements and characteristic subgroups of abelian groups”, Proc. London Math. Soc. (2), 39:7 (1935), 481–514 | DOI | MR

[11] A. M. Sebeldin, “Gruppy gomomorfizmov vpolne razlozhimykh abelevykh grupp bez krucheniya”, Izv. vuzov. Matem., 1973, no. 7, 77–84 | MR | Zbl