Multivariate Extremes of Random Scores of Particles in Branching Processes with Max-Linear Inheritance
Matematičeskie zametki, Tome 105 (2019) no. 3, pp. 395-405.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper continues the author's long-term study of the extrema of random scores of particles in branching processes. It is assumed that the particle scores are dependent via common heredity, the dependence being determined by the distance. The case in which the scores have distributions with heavy tails is considered. The max-linear score generation model is used. The asymptotic behavior of multivariate extremes of scores over generations is studied. Nondegenerate limit laws are obtained for the maxima under linear normalization, and examples are given for various types of branching processes.
Keywords: branching process, multivariate extremum, heavy tail, upper tail dependence coefficient.
@article{MZM_2019_105_3_a6,
     author = {A. V. Lebedev},
     title = {Multivariate {Extremes} of {Random} {Scores} of {Particles} in {Branching} {Processes} with {Max-Linear} {Inheritance}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {395--405},
     publisher = {mathdoc},
     volume = {105},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_105_3_a6/}
}
TY  - JOUR
AU  - A. V. Lebedev
TI  - Multivariate Extremes of Random Scores of Particles in Branching Processes with Max-Linear Inheritance
JO  - Matematičeskie zametki
PY  - 2019
SP  - 395
EP  - 405
VL  - 105
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_105_3_a6/
LA  - ru
ID  - MZM_2019_105_3_a6
ER  - 
%0 Journal Article
%A A. V. Lebedev
%T Multivariate Extremes of Random Scores of Particles in Branching Processes with Max-Linear Inheritance
%J Matematičeskie zametki
%D 2019
%P 395-405
%V 105
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_105_3_a6/
%G ru
%F MZM_2019_105_3_a6
A. V. Lebedev. Multivariate Extremes of Random Scores of Particles in Branching Processes with Max-Linear Inheritance. Matematičeskie zametki, Tome 105 (2019) no. 3, pp. 395-405. http://geodesic.mathdoc.fr/item/MZM_2019_105_3_a6/

[1] P. Embrechts, C. Klüppelberg, T. Mikosh, Modelling Extremal Events for Insurance and Finance, Springer, New York, 2003 | MR

[2] A. J. McNeil, R. Frey, P. Embrechts, Quantitative Risk Management, Princeton Univ. Press, Princeton, NJ, 2005 | MR | Zbl

[3] R. A. Davis, S. I. Resnick, “Basic properties and prediction of max-ARMA processes”, Adv. in Appl. Probab., 21:4 (1989), 781–803 | DOI | MR | Zbl

[4] R. A. Davis, S. I. Resnick, “Prediction of stationary max-stable processes”, Ann. Appl. Prob., 3:2 (1993), 497–525 | DOI | MR | Zbl

[5] M. T. Alpuim, “An extremal Markovian sequence”, J. Appl. Probab., 26:2 (1989), 219–232 | DOI | MR | Zbl

[6] M. T. Alpuim, N. A. Catkan, J. Hüsler, “Extremes and clustering of nonstationary max-AR(1) sequences”, Stochastic Process. Appl., 56:1 (1995), 174–184 | DOI | MR

[7] A. V. Lebedev, “Statisticheskii analiz MARMA-protsessov pervogo poryadka”, Matem. zametki, 83:4 (2008), 552–558 | DOI | MR | Zbl

[8] A. V. Lebedev, “Nelineinoe prognozirovanie protsessov maksimum-avtoregressii”, Matem. zametki, 85:4 (2009), 636–640 | DOI | MR | Zbl

[9] A. V. Lebedev, “Statisticheskii analiz maksimum-lineinykh sluchainykh protsessov”, Sistemy i sredstva inform., 27:2 (2017), 16–28 | DOI

[10] M. Ferreira, “O zavisimosti ot povedeniya khvostov: opisanie kharaktera protsessov maksimum-avtoregressii pervogo poryadka”, Matem. zametki, 90:6 (2011), 902–917 | DOI | MR | Zbl

[11] H. Ferreira, “Parameter estimation and dependence characterization of the MAR(1) process”, ProbStat Forum, 5 (2012), 107–111 | MR | Zbl

[12] M. Ferreira, H. Ferreira, “Extremes of multivariate ARMAX processes”, TEST, 22:4 (2013), 606–627 | DOI | MR | Zbl

[13] H. Ferreira, L. Pereira, “How to compute the exremal index of stationary random fields”, Statist. Probab. Lett., 78:11 (2008), 1301–1304 | DOI | MR | Zbl

[14] L. Pereira, “The asymptotic location of the maximum of a stationary random field”, Statist. Probab. Lett., 79:20 (2009), 2166–2169 | DOI | MR | Zbl

[15] L. Pereira, A. P. Martins, H. Ferreira, “Clustering of high values in random fields”, Extremes, 20:4 (2017), 807–838 | DOI | MR | Zbl

[16] B. C. Arnold, J. A. Villaseñor, “The tallest man in the world”, Statistical Theory and Applications, Springer, New York, 1996, 81–88 | MR | Zbl

[17] A. G. Pakes, “Extreme order statistics on Galton–Watson trees”, Metrika, 47:1 (1998), 95–117 | DOI | MR | Zbl

[18] K. V. Mitov, G. P. Yanev, “Maximum individual score in critical two-type branching processes”, C. R. Acad. Bulgare Sci., 55:11 (2002), 17–22 | MR | Zbl

[19] I. Rahimov, G. P. Yanev, “On maximum family size in branching processes”, J. Appl. Probab., 36:3 (1999), 632–643 | DOI | MR | Zbl

[20] G. P. Yanev, “Revisiting offspring maxima in branching processes”, Pliska Stud. Math. Bulgar., 18 (2007), 401–426 | MR

[21] J. Bertoin, “On the maximal offspring in a critical branching processes with infinite variance”, J. Appl. Probab., 48:2 (2011), 576–582 | DOI | MR | Zbl

[22] J. Bertoin, “On the maximal offspring in a critical branching processes with finite variance”, J. Appl. Probab., 50:3 (2013), 791–800 | DOI | MR | Zbl

[23] M. C. K. Yang, “On the distribution of the inter-record times in an increasing population”, J. Appl. Probab., 12:1 (1975), 148–154 | DOI | MR | Zbl

[24] V. B. Nevzorov, Rekordy. Matematicheskaya teoriya, Fazis, M., 2000 | MR

[25] P. Deovels, V. B. Nevzorov, “Rekordy v $F^\alpha$-cxeme. II. Predelnye teoremy”, Problemy teorii veroyatnostnykh raspredelenii. 13, Zap. nauchn. sem. POMI, 216, Nauka, SPb., 1994, 42–51 | MR | Zbl

[26] A. V. Lebedev, “Maksimumy sluchainykh priznakov chastits v nadkriticheskikh vetvyaschikhsya protsessakh”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2008, no. 5, 3–6 | MR | Zbl

[27] A. V. Lebedev, “Maxima of random particles scores in Markov branching processes with continuous time”, Extremes, 11:2 (2008), 203–216 | DOI | MR | Zbl

[28] A. V. Lebedev, “Mnogomernye ekstremumy sluchainykh priznakov chastits v nadkriticheskikh vetvyaschikhsya protsessakh”, Teoriya veroyatn. i ee primen., 57:4 (2012), 788–794 | DOI | MR | Zbl

[29] A. V. Lebedev, “Ekstremumy zavisimykh priznakov chastits v vetvyaschikhsya protsessakh”, Sovrem. problemy matem. i mekh., 10:3 (2015), 121–135

[30] A. V. Lebedev, Neklassicheskie zadachi stokhasticheskoi teorii ekstremumov, Diss. $\dots$ dokt. fiz.-matem. nauk, Mosk. un-t, M., 2016

[31] U. Rosler, V. A. Topchii, V. A. Vatutin, “Usloviya skhodimosti dlya vetvyaschikhsya protsessov s chastitsami, imeyuschimi ves”, Diskret. matem., 12:1 (2000), 7–23 | DOI | MR | Zbl

[32] V. A. Vatutin, U. Rosler, V. A. Topchii, “Skorost skhodimosti dlya vetvyaschikhsya protsessov s chastitsami, imeyuschimi ves”, Matem. tr., 5:1 (2002), 18–45 | MR | Zbl

[33] E. Seneta, Pravilno menyayuschiesya funktsii, Nauka, M., 1985 | MR | Zbl

[34] R. Nelsen, An Introduction to Copulas, Springer, New York, 2006 | MR | Zbl

[35] V. A. Vatutin, Vetvyaschiesya protsessy i ikh primeneniya, Lekts. kursy NOTs, 8, MIAN, M., 2008, 108 pp. | DOI

[36] K. Fleischmann, R. Siegmund-Schultze, “The structure of reduced critical Galton-Watson processes”, Math. Nachr., 79 (1977), 233–241 | DOI | MR

[37] A. L. Yakymiv, “Redutsirovannye vetvyaschiesya protsessy”, Teoriya veroyatn. i ee primen., 25:3 (1980), 593–596 | MR | Zbl

[38] V. A. Vatutin, A. M. Zubkov, “Vetvyaschiesya protsessy. I”, Itogi nauki i tekhn. Ser. Teor. veroyatn. Mat. stat. Teor. kibernet., 23, VINITI, M., 1985, 3–67 | MR | Zbl

[39] T. Kharris, Teoriya vetvyaschikhsya sluchainykh protsessov, Mir, M., 1966 | MR

[40] A. L. Yakymiv, “Asimptoticheskie svoistva dokriticheskikh i nadkriticheskikh redutsirovannykh vetvyaschikhsya protsessov”, Teoriya veroyatn. i ee primen., 30:1 (1985), 183–188 | MR | Zbl

[41] A. V. Lebedev, “Ekstremalnye indeksy v skheme serii i ikh prilozheniya”, Inform. i eë primen., 9:3 (2015), 39–54 | DOI