Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2019_105_3_a1, author = {V. Yu. Bereznyuk}, title = {Asphericity of {Groups} {Defined} by {Graphs}}, journal = {Matemati\v{c}eskie zametki}, pages = {332--348}, publisher = {mathdoc}, volume = {105}, number = {3}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2019_105_3_a1/} }
V. Yu. Bereznyuk. Asphericity of Groups Defined by Graphs. Matematičeskie zametki, Tome 105 (2019) no. 3, pp. 332-348. http://geodesic.mathdoc.fr/item/MZM_2019_105_3_a1/
[1] I. M. Chiswell, D. J. Collins, J. Huebschmann, “Aspherical group presentations”, Math. Z., 178:1 (1981), 1–36 | DOI | MR | Zbl
[2] M. Gromov, “Random walk in random groups”, Geom. Funct. Anal., 13:1 (2003), 73–146 | DOI | MR | Zbl
[3] Y. Ollivier, “On a small cancellation theorem of Gromov”, Bull. Belg. Math. Soc. Simon Stevin, 13:1 (2006), 75–89 | MR | Zbl
[4] D. Gruber, “Groups with graphical $C(6)$ and $C(7)$ small cancellation presentations”, Trans. Amer. Math. Soc., 367:3 (2015), 2051–2078 | DOI | MR | Zbl
[5] A. A. Klyachko, “A funny property of a sphere and equations over groups”, Comm. Algebra, 21:7 (1993), 2555–2575 | DOI | MR | Zbl
[6] D. J. Collins, J. Huebschmann, “Spherical diagrams and identities among relations”, Math. Ann., 261:2 (1982), 155–183 | DOI | MR | Zbl
[7] R. Lindon, P. Shupp, Kombinatornaya teoriya grupp, Mir, M., 1980 | MR | Zbl