Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2019_105_2_a5, author = {B. S. Kalitin}, title = {On the {Aizerman} {Problem} for {Systems} of {Two} {Differential} {Equations}}, journal = {Matemati\v{c}eskie zametki}, pages = {240--250}, publisher = {mathdoc}, volume = {105}, number = {2}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2019_105_2_a5/} }
B. S. Kalitin. On the Aizerman Problem for Systems of Two Differential Equations. Matematičeskie zametki, Tome 105 (2019) no. 2, pp. 240-250. http://geodesic.mathdoc.fr/item/MZM_2019_105_2_a5/
[1] B. S. Kalitin, Ustoichivost differentsialnykh uravnenii (Metod znakopostoyannykh funktsii Lyapunova), LAP Lambert Acad. Publ., Saarbrucken, 2012
[2] N. Rush, P. Abets, M. Lalua, Pryamoi metod Lyapunova v teorii ustoichivosti, Mir, M., 1980 | MR | Zbl
[3] N. G. Bulgakov, B. S. Kalitin, “Obobschenie teorem vtorogo metoda Lyapunova. 1. Teoriya”, Izv. AN BSSR. Ser. fiz.-matem. nauk, 3:3 (1978), 32–36 | MR | Zbl
[4] M. A. Aizerman, “Ob odnoi probleme, kasayuscheisya ustoichivosti “v bolshom” dinamicheskikh sistem”, UMN, 4:4 (32) (1949), 187–188 | MR | Zbl
[5] W. Hahn, Stability of Motion, Springer-Verlag, Berlin, 1967 | MR | Zbl
[6] E. A. Barbashin, Funktsii Lyapunova, M., Nauka, 1970 | MR
[7] N. N. Krasovskii, “Teoremy ob ustoichivosti dvizheniya, opredelyaemogo sistemoi dvukh uravnenii”, Prikladnaya matematika i mekhanika, 16:5 (1952), 547–554 | MR
[8] V. A. Pliss, Nekotorye problemy teorii ustoichivosti dvizheniya v tselom, L., Izd-vo LGU, 1958
[9] V. V. Amelkin, Differentsialnye uravneniya, Uchebnoe posobie, Minsk, BGU, 2012