Chebyshev Polynomials and Integer Coefficients
Matematičeskie zametki, Tome 105 (2019) no. 2, pp. 302-312
Voir la notice de l'article provenant de la source Math-Net.Ru
Generalized Chebyshev polynomials are introduced and studied in this paper. They are applied to obtain a lower bound for the $\sup$-norm on the closed interval for nonzero polynomials with integer coefficients of arbitrary degree.
Keywords:
extremal properties of polynomials, Hilbert–Fekete theorem, integer algebraic numbers, asymptotic law of the distribution of primes, Eisenstein criterion for the irreducibility of polynomials.
@article{MZM_2019_105_2_a10,
author = {R. M. Trigub},
title = {Chebyshev {Polynomials} and {Integer} {Coefficients}},
journal = {Matemati\v{c}eskie zametki},
pages = {302--312},
publisher = {mathdoc},
volume = {105},
number = {2},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2019_105_2_a10/}
}
R. M. Trigub. Chebyshev Polynomials and Integer Coefficients. Matematičeskie zametki, Tome 105 (2019) no. 2, pp. 302-312. http://geodesic.mathdoc.fr/item/MZM_2019_105_2_a10/