Chebyshev Polynomials and Integer Coefficients
Matematičeskie zametki, Tome 105 (2019) no. 2, pp. 302-312

Voir la notice de l'article provenant de la source Math-Net.Ru

Generalized Chebyshev polynomials are introduced and studied in this paper. They are applied to obtain a lower bound for the $\sup$-norm on the closed interval for nonzero polynomials with integer coefficients of arbitrary degree.
Keywords: extremal properties of polynomials, Hilbert–Fekete theorem, integer algebraic numbers, asymptotic law of the distribution of primes, Eisenstein criterion for the irreducibility of polynomials.
@article{MZM_2019_105_2_a10,
     author = {R. M. Trigub},
     title = {Chebyshev {Polynomials} and {Integer} {Coefficients}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {302--312},
     publisher = {mathdoc},
     volume = {105},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_105_2_a10/}
}
TY  - JOUR
AU  - R. M. Trigub
TI  - Chebyshev Polynomials and Integer Coefficients
JO  - Matematičeskie zametki
PY  - 2019
SP  - 302
EP  - 312
VL  - 105
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_105_2_a10/
LA  - ru
ID  - MZM_2019_105_2_a10
ER  - 
%0 Journal Article
%A R. M. Trigub
%T Chebyshev Polynomials and Integer Coefficients
%J Matematičeskie zametki
%D 2019
%P 302-312
%V 105
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_105_2_a10/
%G ru
%F MZM_2019_105_2_a10
R. M. Trigub. Chebyshev Polynomials and Integer Coefficients. Matematičeskie zametki, Tome 105 (2019) no. 2, pp. 302-312. http://geodesic.mathdoc.fr/item/MZM_2019_105_2_a10/