@article{MZM_2019_105_2_a1,
author = {A. Bal\v{c}i\={u}nas and A. Dubickas and A. Laurin\v{c}ikas},
title = {On the {Hurwitz} {Zeta} {Functions} with {Algebraic} {Irrational} {Parameter}},
journal = {Matemati\v{c}eskie zametki},
pages = {179--186},
year = {2019},
volume = {105},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2019_105_2_a1/}
}
A. Balčiūnas; A. Dubickas; A. Laurinčikas. On the Hurwitz Zeta Functions with Algebraic Irrational Parameter. Matematičeskie zametki, Tome 105 (2019) no. 2, pp. 179-186. http://geodesic.mathdoc.fr/item/MZM_2019_105_2_a1/
[1] C. N. Voronin, Analiticheskie svoistva proizvodyaschikh funktsii Dirikhle arifmeticheskikh ob'ektov, Dis. dokt. fiz.-matem. nauk, MIAN, M., 1977
[2] S. M. Gonek, Analytic Properties of Zeta and $L$-Functions, Ph.D. Thesis, Univ. of Michigan, 1979 | MR
[3] B. Bagchi, The Statistical Behavior and Universality Properties of the Riemann Zeta-Function and Other Allied Dirichlet Series, Thesis, Indian Statistical Institute, 1981 | Zbl
[4] A. Laurinčikas, R. Garunkštis, The Lerch Zeta-Function, Kluwer, Kluwer Acad. Publ., 2002 | MR | Zbl
[5] A. Laurinčikas, “On the joint universality of Hurwitz zeta-functions”, Šiauliai Math. Semin., 3 (11) (2008), 169–187 | MR | Zbl
[6] J. W. S. Cassels, “Footnote to a note of Davenport and Heilbronn”, J. London Math. Soc., 36 (1961), 177–184 | DOI | MR | Zbl
[7] P. Billingsley, Convergence of Probability Measures, John Wiley Sons, New York, 1968 | MR | Zbl