On the Hurwitz Zeta Functions with Algebraic Irrational Parameter
Matematičeskie zametki, Tome 105 (2019) no. 2, pp. 179-186.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is well known that the Hurwitz zeta function $\zeta(s,\alpha)$ with rational or transcendental parameter $\alpha$ is universal in the sense of Voronin, i.e., a wide class of analytic functions can be approximated by the shifts $\zeta(s+i\tau,\alpha)$, $\tau\in \mathbb R$. The case of algebraic irrational $\alpha$ is still an open problem. It is proved that there exists a nonempty closed set of analytic functions that can be approximated by shifts $\zeta(s+i\tau,\alpha)$ with algebraic irrational $\alpha$.
Keywords: algebraic irrational number, Hurwitz zeta function, limit theorem, universality.
@article{MZM_2019_105_2_a1,
     author = {A. Bal\v{c}i\={u}nas and A. Dubickas and A. Laurin\v{c}ikas},
     title = {On the {Hurwitz} {Zeta} {Functions} with {Algebraic} {Irrational} {Parameter}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {179--186},
     publisher = {mathdoc},
     volume = {105},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_105_2_a1/}
}
TY  - JOUR
AU  - A. Balčiūnas
AU  - A. Dubickas
AU  - A. Laurinčikas
TI  - On the Hurwitz Zeta Functions with Algebraic Irrational Parameter
JO  - Matematičeskie zametki
PY  - 2019
SP  - 179
EP  - 186
VL  - 105
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_105_2_a1/
LA  - ru
ID  - MZM_2019_105_2_a1
ER  - 
%0 Journal Article
%A A. Balčiūnas
%A A. Dubickas
%A A. Laurinčikas
%T On the Hurwitz Zeta Functions with Algebraic Irrational Parameter
%J Matematičeskie zametki
%D 2019
%P 179-186
%V 105
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_105_2_a1/
%G ru
%F MZM_2019_105_2_a1
A. Balčiūnas; A. Dubickas; A. Laurinčikas. On the Hurwitz Zeta Functions with Algebraic Irrational Parameter. Matematičeskie zametki, Tome 105 (2019) no. 2, pp. 179-186. http://geodesic.mathdoc.fr/item/MZM_2019_105_2_a1/

[1] C. N. Voronin, Analiticheskie svoistva proizvodyaschikh funktsii Dirikhle arifmeticheskikh ob'ektov, Dis. dokt. fiz.-matem. nauk, MIAN, M., 1977

[2] S. M. Gonek, Analytic Properties of Zeta and $L$-Functions, Ph.D. Thesis, Univ. of Michigan, 1979 | MR

[3] B. Bagchi, The Statistical Behavior and Universality Properties of the Riemann Zeta-Function and Other Allied Dirichlet Series, Thesis, Indian Statistical Institute, 1981 | Zbl

[4] A. Laurinčikas, R. Garunkštis, The Lerch Zeta-Function, Kluwer, Kluwer Acad. Publ., 2002 | MR | Zbl

[5] A. Laurinčikas, “On the joint universality of Hurwitz zeta-functions”, Šiauliai Math. Semin., 3 (11) (2008), 169–187 | MR | Zbl

[6] J. W. S. Cassels, “Footnote to a note of Davenport and Heilbronn”, J. London Math. Soc., 36 (1961), 177–184 | DOI | MR | Zbl

[7] P. Billingsley, Convergence of Probability Measures, John Wiley Sons, New York, 1968 | MR | Zbl