Classification of $\mathbb{Z}_3$-Equivariant Simple Function Germs
Matematičeskie zametki, Tome 105 (2019) no. 2, pp. 163-178.

Voir la notice de l'article provenant de la source Math-Net.Ru

The present paper deals with the classification of multivariate holomorphic function germs that are equivariant simple under representations of cyclic groups. We obtain a complete classification of such function germs of two and three variables for all possible nontrivial $\mathbb{Z}_3$-actions. Our main classification methods generalize those used for the classification of simple germs in the nonequivariant case.
Keywords: $G$-space, classification of singularities, equivariant mapping, simple germ.
@article{MZM_2019_105_2_a0,
     author = {E. A. Astashov},
     title = {Classification of $\mathbb{Z}_3${-Equivariant} {Simple} {Function} {Germs}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {163--178},
     publisher = {mathdoc},
     volume = {105},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_105_2_a0/}
}
TY  - JOUR
AU  - E. A. Astashov
TI  - Classification of $\mathbb{Z}_3$-Equivariant Simple Function Germs
JO  - Matematičeskie zametki
PY  - 2019
SP  - 163
EP  - 178
VL  - 105
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_105_2_a0/
LA  - ru
ID  - MZM_2019_105_2_a0
ER  - 
%0 Journal Article
%A E. A. Astashov
%T Classification of $\mathbb{Z}_3$-Equivariant Simple Function Germs
%J Matematičeskie zametki
%D 2019
%P 163-178
%V 105
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_105_2_a0/
%G ru
%F MZM_2019_105_2_a0
E. A. Astashov. Classification of $\mathbb{Z}_3$-Equivariant Simple Function Germs. Matematičeskie zametki, Tome 105 (2019) no. 2, pp. 163-178. http://geodesic.mathdoc.fr/item/MZM_2019_105_2_a0/

[1] V. I. Arnold, “Kriticheskie tochki funktsii na mnogoobrazii s kraem, prostye gruppy Li $B_k$, $C_k$, $F_4$ i osobennosti evolyut”, UMN, 33:5 (203) (1978), 91–105 | MR | Zbl

[2] W. Domitrz, M. Manoel, P. de M. Rios, “The Wigner caustic on shell and singularities of odd functions”, J. Geom. Phys., 71 (2013), 58–72 | DOI | MR | Zbl

[3] V. I. Arnold, “Normalnye formy funktsii vblizi vyrozhdennykh kriticheskikh tochek, gruppy Veilya $A_k$, $D_k$, $E_k$ i lagranzhevy osobennosti”, Funkts. analiz i ego pril., 6:4 (1972), 3–25 | MR | Zbl

[4] E. A. Astashov, “O klassifikatsii osobennostei, ekvivariantno prostykh otnositelno predstavlenii tsiklicheskikh grupp”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 26:2 (2016), 155–159 | DOI | MR | Zbl

[5] E. A. Astashov, “O klassifikatsii rostkov funktsii dvukh peremennykh, ekvivariantno prostykh otnositelno deistvii tsiklicheskoi gruppy poryadka tri”, Vestn. SamU. Estestvennonauchn. ser., 2016, no. 3-4, 7–13 | Zbl

[6] S. Bochner, “Compact groups of differentiable transformations”, Ann. of Math. (2), 46 (1945), 372–381 | DOI | MR | Zbl

[7] J. J. Duistermaat, J. A. C. Kolk, Lie Groups, Springer-Verlag, Berlin, 2000 | MR | Zbl

[8] V. I. Arnold, A. N. Varchenko, S. M. Gusein-Zade, Osobennosti differentsiruemykh otobrazhenii, MTsNMO, M., 2009

[9] J. W. Bruce, N. P. Kirk, A. A. du Plessis, “Complete transversals and the classification of singularities”, Nonlinearity, 10:1 (1997), 253–275 | DOI | MR | Zbl

[10] P. Slodowy, “Einige Bemerkungen zur Entfaltung symmetrischer Funktionen”, Math. Z., 158:2 (1978), 157–170 | DOI | MR | Zbl

[11] M. Golubitsky, I. Stewart, D. G. Schaeffer, Singularities and Groups in Bifurcation Theory, Vol. II, Springer, New York, 1988 | MR | Zbl

[12] M. Giusti, “Classification des singularités isolées simples d'intersections complètes”, Singularities, Part 1, Proc. Sympos. Pure Math., 40, Amer. Math. Soc., Providence, RI, 1983, 457–494 | DOI | MR

[13] Dzh. Milnor, Teoriya Morsa, Izd-vo LKI, M., 2008 | MR | Zbl