Hardy--Steklov Operators and the Duality Principle in Weighted First-Order Sobolev Spaces on the Real Axis
Matematičeskie zametki, Tome 105 (2019) no. 1, pp. 108-122
Voir la notice de l'article provenant de la source Math-Net.Ru
Estimates of the norms of spaces associated to weighted first-order Sobolev spaces with various weight functions and summation parameters are established. As the main technical tool, boundedness criteria for the Hardy–Steklov integral operator with variable limits of integration in Lebesgue spaces on the real axis are used.
Keywords:
Sobolev space, Hardy–Steklov operator, duality principle.
@article{MZM_2019_105_1_a9,
author = {V. D. Stepanov and E. P. Ushakova},
title = {Hardy--Steklov {Operators} and the {Duality} {Principle} in {Weighted} {First-Order} {Sobolev} {Spaces} on the {Real} {Axis}},
journal = {Matemati\v{c}eskie zametki},
pages = {108--122},
publisher = {mathdoc},
volume = {105},
number = {1},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2019_105_1_a9/}
}
TY - JOUR AU - V. D. Stepanov AU - E. P. Ushakova TI - Hardy--Steklov Operators and the Duality Principle in Weighted First-Order Sobolev Spaces on the Real Axis JO - Matematičeskie zametki PY - 2019 SP - 108 EP - 122 VL - 105 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2019_105_1_a9/ LA - ru ID - MZM_2019_105_1_a9 ER -
%0 Journal Article %A V. D. Stepanov %A E. P. Ushakova %T Hardy--Steklov Operators and the Duality Principle in Weighted First-Order Sobolev Spaces on the Real Axis %J Matematičeskie zametki %D 2019 %P 108-122 %V 105 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2019_105_1_a9/ %G ru %F MZM_2019_105_1_a9
V. D. Stepanov; E. P. Ushakova. Hardy--Steklov Operators and the Duality Principle in Weighted First-Order Sobolev Spaces on the Real Axis. Matematičeskie zametki, Tome 105 (2019) no. 1, pp. 108-122. http://geodesic.mathdoc.fr/item/MZM_2019_105_1_a9/