Hardy--Steklov Operators and the Duality Principle in Weighted First-Order Sobolev Spaces on the Real Axis
Matematičeskie zametki, Tome 105 (2019) no. 1, pp. 108-122.

Voir la notice de l'article provenant de la source Math-Net.Ru

Estimates of the norms of spaces associated to weighted first-order Sobolev spaces with various weight functions and summation parameters are established. As the main technical tool, boundedness criteria for the Hardy–Steklov integral operator with variable limits of integration in Lebesgue spaces on the real axis are used.
Keywords: Sobolev space, Hardy–Steklov operator, duality principle.
@article{MZM_2019_105_1_a9,
     author = {V. D. Stepanov and E. P. Ushakova},
     title = {Hardy--Steklov {Operators} and the {Duality} {Principle} in {Weighted} {First-Order} {Sobolev} {Spaces} on the {Real} {Axis}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {108--122},
     publisher = {mathdoc},
     volume = {105},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_105_1_a9/}
}
TY  - JOUR
AU  - V. D. Stepanov
AU  - E. P. Ushakova
TI  - Hardy--Steklov Operators and the Duality Principle in Weighted First-Order Sobolev Spaces on the Real Axis
JO  - Matematičeskie zametki
PY  - 2019
SP  - 108
EP  - 122
VL  - 105
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_105_1_a9/
LA  - ru
ID  - MZM_2019_105_1_a9
ER  - 
%0 Journal Article
%A V. D. Stepanov
%A E. P. Ushakova
%T Hardy--Steklov Operators and the Duality Principle in Weighted First-Order Sobolev Spaces on the Real Axis
%J Matematičeskie zametki
%D 2019
%P 108-122
%V 105
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_105_1_a9/
%G ru
%F MZM_2019_105_1_a9
V. D. Stepanov; E. P. Ushakova. Hardy--Steklov Operators and the Duality Principle in Weighted First-Order Sobolev Spaces on the Real Axis. Matematičeskie zametki, Tome 105 (2019) no. 1, pp. 108-122. http://geodesic.mathdoc.fr/item/MZM_2019_105_1_a9/

[1] C. Bennett, R. Sharpley, Interpolation of Operators, Academic Press, Boston, MA, 1988 | MR

[2] A. A. Belyaev, A. A. Shkalikov, “Multiplikatory v prostranstvakh besselevykh potentsialov: sluchai indeksov neotritsatelnoi gladkosti”, Matem. zametki, 102:5 (2017), 684–699 | DOI | MR

[3] A. A. Shkalikov, D.-G. Bak, “Multiplikatory v dualnykh sobolevskikh prostranstvakh i operatory Shredingera s potentsialami-raspredeleniyami”, Matem. zametki, 71:5 (2002), 643–651 | DOI | MR | Zbl

[4] R. Oinarov, “Boundedness of integral operators from weighted Sobolev space to weighted Lebesgue space”, Complex Var. Elliptic Eq., 56 (2011), 1021–1038 | DOI | MR

[5] R. Oinarov, “Ogranichennost integralnykh operatorov v vesovykh prostranstvakh Soboleva”, Izv. RAN. Ser. matem., 78:4 (2014), 207–223 | DOI | MR | Zbl

[6] S. P. Eveson, V. D. Stepanov, E. P. Ushakova, “A duality principle in weighted Sobolev spaces on the real line”, Math. Nachr., 288:8 (2015), 877–897 | DOI | MR

[7] D. V. Prokhorov, V. D. Stepanov, E. P. Ushakova, “On associate spaces of weighted Sobolev space on the real line”, Math. Nachr., 290:5 (2017), 890–912 | DOI | MR

[8] D. V. Prokhorov, V. D. Stepanov, E. P. Ushakova, “Integralnye operatory Khardi–Steklova”, Sovr. probl. matem., 22, MIAN, M., 2016, 3–185 | DOI | MR | Zbl

[9] K. Lesnik, L. Maligranda, “Abstract Cesaro spaces. Duality”, J. Math. Anal. Appl., 424:2 (2015), 932–951 | DOI | MR | Zbl

[10] E. G. Bakhtigareeva, M. L. Goldman, “Vesovye neravenstva dlya operatorov tipa Khardi na konuse ubyvayuschikh funktsii iz prostranstva Orlicha”, Matem. zametki, 102:5 (2017), 673–683 | DOI | MR | Zbl

[11] M. L. Goldman, “Otsenki dlya suzhenii monotonnykh operatorov na konus ubyvayuschikh funktsii v prostranstve Orlicha”, Matem. zametki, 100:1 (2016), 30–46 | DOI | MR

[12] V. D. Stepanov, “Ob optimalnykh prostranstvakh Banakha, soderzhaschikh vesovoi konus monotonnykh ili kvazivognutykh funktsii”, Matem. zametki, 98:6 (2015), 907–922 | DOI | MR

[13] H. P. Heinig, G. Sinnamon, “Mapping properties of integral averaging operators”, Studia Math., 129 (1998), 157–177 | MR | Zbl

[14] V. D. Stepanov, E. P. Ushakova, “Ob integralnykh operatorakh s peremennymi predelami integrirovaniya”, Funktsionalnye prostranstva, garmonicheskii analiz, differentsialnye uravneniya, Tr. MIAN, 232, Nauka, MAIK «Nauka/Interperiodika», M., 2001, 298–317 | MR | Zbl

[15] V. G. Mazya, Prostranstva S. L. Soboleva, Izd-vo Leningradsk. un-ta, L., 1985 | MR | Zbl

[16] E. N. Lomakina, “Otsenki approksimativnykh chisel odnogo klassa integralnykh operatorov. I”, Sib. matem. zhurn., 44:1 (2003), 178–192 | MR | Zbl

[17] E. N. Lomakina, “Otsenki approksimativnykh chisel odnogo klassa integralnykh operatorov. II”, Sib. matem. zhurn., 44:2 (2003), 372–388 | MR | Zbl

[18] M. G. Nasyrova, E. P. Ushakova, “Operatory Khardi–Steklova i neravenstva vlozheniya tipa Soboleva”, Funktsionalnye prostranstva, teoriya priblizhenii, smezhnye razdely matematicheskogo analiza, Tr. MIAN, 293, MAIK «Nauka/Interperiodika», M., 2016, 236–262 | DOI | MR

[19] V. D. Stepanov, E. P. Ushakova, “Kernel operators with variable intervals of integration in Lebesgue spaces and applications”, Math. Ineq. Appl., 13:3 (2010), 449–510 | MR | Zbl

[20] V. D. Stepanov, E. P. Ushakova, “On boundedness of a certain class of Hardy–Steklov type operators in Lebesgue spaces”, Banach J. Math. Anal., 4 (2010), 28–52 | DOI | MR | Zbl

[21] E. P. Ushakova, “On boundedness and compactness of a certain class of kernel operators”, J. Funct. Spaces Appl., 9 (2011), 67–107 | DOI | MR | Zbl

[22] E. P. Ushakova, “Alternative boundedness characteristics for the Hardy–Steklov operator”, Eurasian Math. J., 8:2 (2017), 74–96 | MR

[23] R. Oinarov, “On weighted norm inequalities with three weights”, J. London Math. Soc., 48 (1993), 103–116 | DOI | MR | Zbl