Hardy--Steklov Operators and the Duality Principle in Weighted First-Order Sobolev Spaces on the Real Axis
Matematičeskie zametki, Tome 105 (2019) no. 1, pp. 108-122

Voir la notice de l'article provenant de la source Math-Net.Ru

Estimates of the norms of spaces associated to weighted first-order Sobolev spaces with various weight functions and summation parameters are established. As the main technical tool, boundedness criteria for the Hardy–Steklov integral operator with variable limits of integration in Lebesgue spaces on the real axis are used.
Keywords: Sobolev space, Hardy–Steklov operator, duality principle.
@article{MZM_2019_105_1_a9,
     author = {V. D. Stepanov and E. P. Ushakova},
     title = {Hardy--Steklov {Operators} and the {Duality} {Principle} in {Weighted} {First-Order} {Sobolev} {Spaces} on the {Real} {Axis}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {108--122},
     publisher = {mathdoc},
     volume = {105},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_105_1_a9/}
}
TY  - JOUR
AU  - V. D. Stepanov
AU  - E. P. Ushakova
TI  - Hardy--Steklov Operators and the Duality Principle in Weighted First-Order Sobolev Spaces on the Real Axis
JO  - Matematičeskie zametki
PY  - 2019
SP  - 108
EP  - 122
VL  - 105
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_105_1_a9/
LA  - ru
ID  - MZM_2019_105_1_a9
ER  - 
%0 Journal Article
%A V. D. Stepanov
%A E. P. Ushakova
%T Hardy--Steklov Operators and the Duality Principle in Weighted First-Order Sobolev Spaces on the Real Axis
%J Matematičeskie zametki
%D 2019
%P 108-122
%V 105
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_105_1_a9/
%G ru
%F MZM_2019_105_1_a9
V. D. Stepanov; E. P. Ushakova. Hardy--Steklov Operators and the Duality Principle in Weighted First-Order Sobolev Spaces on the Real Axis. Matematičeskie zametki, Tome 105 (2019) no. 1, pp. 108-122. http://geodesic.mathdoc.fr/item/MZM_2019_105_1_a9/