Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2019_105_1_a9, author = {V. D. Stepanov and E. P. Ushakova}, title = {Hardy--Steklov {Operators} and the {Duality} {Principle} in {Weighted} {First-Order} {Sobolev} {Spaces} on the {Real} {Axis}}, journal = {Matemati\v{c}eskie zametki}, pages = {108--122}, publisher = {mathdoc}, volume = {105}, number = {1}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2019_105_1_a9/} }
TY - JOUR AU - V. D. Stepanov AU - E. P. Ushakova TI - Hardy--Steklov Operators and the Duality Principle in Weighted First-Order Sobolev Spaces on the Real Axis JO - Matematičeskie zametki PY - 2019 SP - 108 EP - 122 VL - 105 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2019_105_1_a9/ LA - ru ID - MZM_2019_105_1_a9 ER -
%0 Journal Article %A V. D. Stepanov %A E. P. Ushakova %T Hardy--Steklov Operators and the Duality Principle in Weighted First-Order Sobolev Spaces on the Real Axis %J Matematičeskie zametki %D 2019 %P 108-122 %V 105 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2019_105_1_a9/ %G ru %F MZM_2019_105_1_a9
V. D. Stepanov; E. P. Ushakova. Hardy--Steklov Operators and the Duality Principle in Weighted First-Order Sobolev Spaces on the Real Axis. Matematičeskie zametki, Tome 105 (2019) no. 1, pp. 108-122. http://geodesic.mathdoc.fr/item/MZM_2019_105_1_a9/
[1] C. Bennett, R. Sharpley, Interpolation of Operators, Academic Press, Boston, MA, 1988 | MR
[2] A. A. Belyaev, A. A. Shkalikov, “Multiplikatory v prostranstvakh besselevykh potentsialov: sluchai indeksov neotritsatelnoi gladkosti”, Matem. zametki, 102:5 (2017), 684–699 | DOI | MR
[3] A. A. Shkalikov, D.-G. Bak, “Multiplikatory v dualnykh sobolevskikh prostranstvakh i operatory Shredingera s potentsialami-raspredeleniyami”, Matem. zametki, 71:5 (2002), 643–651 | DOI | MR | Zbl
[4] R. Oinarov, “Boundedness of integral operators from weighted Sobolev space to weighted Lebesgue space”, Complex Var. Elliptic Eq., 56 (2011), 1021–1038 | DOI | MR
[5] R. Oinarov, “Ogranichennost integralnykh operatorov v vesovykh prostranstvakh Soboleva”, Izv. RAN. Ser. matem., 78:4 (2014), 207–223 | DOI | MR | Zbl
[6] S. P. Eveson, V. D. Stepanov, E. P. Ushakova, “A duality principle in weighted Sobolev spaces on the real line”, Math. Nachr., 288:8 (2015), 877–897 | DOI | MR
[7] D. V. Prokhorov, V. D. Stepanov, E. P. Ushakova, “On associate spaces of weighted Sobolev space on the real line”, Math. Nachr., 290:5 (2017), 890–912 | DOI | MR
[8] D. V. Prokhorov, V. D. Stepanov, E. P. Ushakova, “Integralnye operatory Khardi–Steklova”, Sovr. probl. matem., 22, MIAN, M., 2016, 3–185 | DOI | MR | Zbl
[9] K. Lesnik, L. Maligranda, “Abstract Cesaro spaces. Duality”, J. Math. Anal. Appl., 424:2 (2015), 932–951 | DOI | MR | Zbl
[10] E. G. Bakhtigareeva, M. L. Goldman, “Vesovye neravenstva dlya operatorov tipa Khardi na konuse ubyvayuschikh funktsii iz prostranstva Orlicha”, Matem. zametki, 102:5 (2017), 673–683 | DOI | MR | Zbl
[11] M. L. Goldman, “Otsenki dlya suzhenii monotonnykh operatorov na konus ubyvayuschikh funktsii v prostranstve Orlicha”, Matem. zametki, 100:1 (2016), 30–46 | DOI | MR
[12] V. D. Stepanov, “Ob optimalnykh prostranstvakh Banakha, soderzhaschikh vesovoi konus monotonnykh ili kvazivognutykh funktsii”, Matem. zametki, 98:6 (2015), 907–922 | DOI | MR
[13] H. P. Heinig, G. Sinnamon, “Mapping properties of integral averaging operators”, Studia Math., 129 (1998), 157–177 | MR | Zbl
[14] V. D. Stepanov, E. P. Ushakova, “Ob integralnykh operatorakh s peremennymi predelami integrirovaniya”, Funktsionalnye prostranstva, garmonicheskii analiz, differentsialnye uravneniya, Tr. MIAN, 232, Nauka, MAIK «Nauka/Interperiodika», M., 2001, 298–317 | MR | Zbl
[15] V. G. Mazya, Prostranstva S. L. Soboleva, Izd-vo Leningradsk. un-ta, L., 1985 | MR | Zbl
[16] E. N. Lomakina, “Otsenki approksimativnykh chisel odnogo klassa integralnykh operatorov. I”, Sib. matem. zhurn., 44:1 (2003), 178–192 | MR | Zbl
[17] E. N. Lomakina, “Otsenki approksimativnykh chisel odnogo klassa integralnykh operatorov. II”, Sib. matem. zhurn., 44:2 (2003), 372–388 | MR | Zbl
[18] M. G. Nasyrova, E. P. Ushakova, “Operatory Khardi–Steklova i neravenstva vlozheniya tipa Soboleva”, Funktsionalnye prostranstva, teoriya priblizhenii, smezhnye razdely matematicheskogo analiza, Tr. MIAN, 293, MAIK «Nauka/Interperiodika», M., 2016, 236–262 | DOI | MR
[19] V. D. Stepanov, E. P. Ushakova, “Kernel operators with variable intervals of integration in Lebesgue spaces and applications”, Math. Ineq. Appl., 13:3 (2010), 449–510 | MR | Zbl
[20] V. D. Stepanov, E. P. Ushakova, “On boundedness of a certain class of Hardy–Steklov type operators in Lebesgue spaces”, Banach J. Math. Anal., 4 (2010), 28–52 | DOI | MR | Zbl
[21] E. P. Ushakova, “On boundedness and compactness of a certain class of kernel operators”, J. Funct. Spaces Appl., 9 (2011), 67–107 | DOI | MR | Zbl
[22] E. P. Ushakova, “Alternative boundedness characteristics for the Hardy–Steklov operator”, Eurasian Math. J., 8:2 (2017), 74–96 | MR
[23] R. Oinarov, “On weighted norm inequalities with three weights”, J. London Math. Soc., 48 (1993), 103–116 | DOI | MR | Zbl