The Cauchy Problem for the Radiation Transfer Equation with Fresnel and Lambert Matching Conditions
Matematičeskie zametki, Tome 105 (2019) no. 1, pp. 95-107

Voir la notice de l'article provenant de la source Math-Net.Ru

The well-posedness of the initial boundary-value problem for the nonstationary radiation transfer equation in a three-dimensional bounded domain with generalized matching conditions at the interfaces is studied. The case of the matching operator expressed as a linear combination of operators of Fresnel and Lambert types is considered. The existence of a unique strongly continuous semigroup of solving operators of the Cauchy problem is proved, and stabilization conditions for the nonstationary solution are obtained.
Keywords: radiation transfer equation, initial boundary-value problem, matching conditions, Fresnel's and Lambert's laws.
@article{MZM_2019_105_1_a8,
     author = {I. V. Prokhorov},
     title = {The {Cauchy} {Problem} for the {Radiation} {Transfer} {Equation} with {Fresnel} and {Lambert} {Matching} {Conditions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {95--107},
     publisher = {mathdoc},
     volume = {105},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_105_1_a8/}
}
TY  - JOUR
AU  - I. V. Prokhorov
TI  - The Cauchy Problem for the Radiation Transfer Equation with Fresnel and Lambert Matching Conditions
JO  - Matematičeskie zametki
PY  - 2019
SP  - 95
EP  - 107
VL  - 105
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_105_1_a8/
LA  - ru
ID  - MZM_2019_105_1_a8
ER  - 
%0 Journal Article
%A I. V. Prokhorov
%T The Cauchy Problem for the Radiation Transfer Equation with Fresnel and Lambert Matching Conditions
%J Matematičeskie zametki
%D 2019
%P 95-107
%V 105
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_105_1_a8/
%G ru
%F MZM_2019_105_1_a8
I. V. Prokhorov. The Cauchy Problem for the Radiation Transfer Equation with Fresnel and Lambert Matching Conditions. Matematičeskie zametki, Tome 105 (2019) no. 1, pp. 95-107. http://geodesic.mathdoc.fr/item/MZM_2019_105_1_a8/