The Cauchy Problem for the Radiation Transfer Equation with Fresnel and Lambert Matching Conditions
Matematičeskie zametki, Tome 105 (2019) no. 1, pp. 95-107.

Voir la notice de l'article provenant de la source Math-Net.Ru

The well-posedness of the initial boundary-value problem for the nonstationary radiation transfer equation in a three-dimensional bounded domain with generalized matching conditions at the interfaces is studied. The case of the matching operator expressed as a linear combination of operators of Fresnel and Lambert types is considered. The existence of a unique strongly continuous semigroup of solving operators of the Cauchy problem is proved, and stabilization conditions for the nonstationary solution are obtained.
Keywords: radiation transfer equation, initial boundary-value problem, matching conditions, Fresnel's and Lambert's laws.
@article{MZM_2019_105_1_a8,
     author = {I. V. Prokhorov},
     title = {The {Cauchy} {Problem} for the {Radiation} {Transfer} {Equation} with {Fresnel} and {Lambert} {Matching} {Conditions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {95--107},
     publisher = {mathdoc},
     volume = {105},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_105_1_a8/}
}
TY  - JOUR
AU  - I. V. Prokhorov
TI  - The Cauchy Problem for the Radiation Transfer Equation with Fresnel and Lambert Matching Conditions
JO  - Matematičeskie zametki
PY  - 2019
SP  - 95
EP  - 107
VL  - 105
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_105_1_a8/
LA  - ru
ID  - MZM_2019_105_1_a8
ER  - 
%0 Journal Article
%A I. V. Prokhorov
%T The Cauchy Problem for the Radiation Transfer Equation with Fresnel and Lambert Matching Conditions
%J Matematičeskie zametki
%D 2019
%P 95-107
%V 105
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_105_1_a8/
%G ru
%F MZM_2019_105_1_a8
I. V. Prokhorov. The Cauchy Problem for the Radiation Transfer Equation with Fresnel and Lambert Matching Conditions. Matematičeskie zametki, Tome 105 (2019) no. 1, pp. 95-107. http://geodesic.mathdoc.fr/item/MZM_2019_105_1_a8/

[1] K. Cherchinyani, Teoriya i prilozheniya uravneniya Boltsmana, Mir, M., 1978 | MR

[2] V. M. Novikov, S. B. Shikhov, Teoriya parametricheskogo vozdeistviya na perenos neitronov, Energoizdat, M., 1982

[3] V. V. Vedenyapin, Kineticheskie uravneniya Boltsmana i Vlasova, Fizmatlit, M., 2001

[4] V. S. Vladimirov, “Matematicheskie zadachi odnoskorostnoi teorii perenosa chastits”, Tr. MIAN SSSR, 61, Izd-vo AN SSSR, M., 1961, 3–158 | MR

[5] T. A. Germogenova, Lokalnye svoistva reshenii uravneniya perenosa, Nauka, M., 1986 | MR

[6] V. I. Agoshkov, Boundary Value Problems for Transport Equations, Birkhäuser, Boston, MA, 1998 | MR

[7] A. A. Arsenev, “Zadacha Koshi dlya linearizovannogo uravneniya Boltsmana”, Zh. vychisl. matem. i matem. fiz., 5:5 (1965), 864–882 | MR | Zbl

[8] Yu. A. Kuznetsov, S. F. Morozov, “Korrektnost postanovki smeshannoi zadachi dlya nestatsionarnogo uravneniya perenosa”, Differents. uravneniya, 8:9 (1972), 1639–1648 | MR | Zbl

[9] J. Voigt, “Positivity in time dependent linear transport theory”, Acta Appl. Math., 2 (1984), 311–331 | DOI | MR | Zbl

[10] N. B. Maslova, “Matematicheskie metody issledovaniya uravneniya Boltsmana”, Algebra i analiz, 3:1 (1991), 3–56 | MR | Zbl

[11] I. V. Prokhorov, “Kraevaya zadacha teorii perenosa izlucheniya v neodnorodnoi srede s usloviyami otrazheniya na granitse”, Differents. uravneniya, 36:6 (2000), 848–851 | MR

[12] I. V. Prokhorov, “O razreshimosti kraevoi zadachi teorii perenosa izlucheniya s obobschennymi usloviyami sopryazheniya na granitse razdela sred”, Izv. RAN. Ser. matem., 67:6 (2003), 169–192 | DOI | MR | Zbl

[13] I.V. Prokhorov, “O strukture mnozhestva nepreryvnosti resheniya kraevoi zadachi dlya uravneniya perenosa izlucheniya”, Matem. zametki, 86:2 (2009), 256–272 | DOI | MR | Zbl

[14] A. A. Amosov, “Boundary value problem for the radiation transfer equation with reflection and refraction conditions”, J. Math. Sci. (N.Y.), 191:2 (2013), 101–149 | DOI | MR | Zbl

[15] A. A. Amosov, “Boundary value problem for the radiation transfer equation with diffuse reflection and refraction conditions”, J. Math. Sci. (N.Y.), 193:2 (2013), 151–176 | DOI | MR | Zbl

[16] A. Amosov, M. Shumarov, “Boundary value problem for radiation transfer equation in multilayered medium with reflection and refraction conditions”, Appl. Anal., 95:7 (2016) | DOI | MR | Zbl

[17] A. A. Amosov, “Radiative transfer equation with Fresnel reflection and refraction conditions in a system of bodies with piecewise smooth boundaries”, J. Math. Sci. (N.Y.), 219:6 (2016), 821–849 | DOI | MR | Zbl

[18] I. V. Prokhorov, “O razreshimosti nachalno-kraevoi zadachi dlya integro-differentsialnogo uravneniya”, Sib. matem. zhurn., 53:2 (2012), 377–387 | MR

[19] I. V. Prokhorov, “Zadacha Koshi dlya uravneniya perenosa izlucheniya s obobschennymi usloviyami sopryazheniya”, Zh. vychisl. matem. i matem. fiz., 53:5 (2013), 753–766 | DOI | MR

[20] I. V. Prokhorov, A. A. Suschenko, “O korrektnosti zadachi Koshi dlya uravneniya perenosa izlucheniya s frenelevskimi usloviyami sopryazheniya”, Sib. matem. zhurn., 56:4 (2015), 922–933 | DOI | MR

[21] I. V. Prokhorov, A. A. Suschenko, A. Kim, “Nachalno-kraevaya zadacha dlya uravneniya perenosa izlucheniya s diffuznymi usloviyami sopryazheniya”, Sib. zhurn. industr. matem., 20:1 (2017), 75–85 | DOI | MR

[22] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New-York, 1983 | DOI | MR | Zbl

[23] O. V. Besov, V. P. Ilin, S. M. Nikolskii, Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1996 | MR | Zbl