On the Collapse of Solutions of the Cauchy Problem for the Cubic Schr\"odinger Evolution Equation
Matematičeskie zametki, Tome 105 (2019) no. 1, pp. 76-83
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that, for some initial data, the solutions of the Cauchy problem for the cubic Schrödinger evolution equation blow up in finite time whose exact value is estimated from above. In addition, lower bounds for the blow-up rate of the solution in certain norms are obtained.
Keywords:
Schrödinger equation, Cauchy problem, interpolation inequality.
@article{MZM_2019_105_1_a6,
author = {Sh. M. Nasibov},
title = {On the {Collapse} of {Solutions} of the {Cauchy} {Problem} for the {Cubic} {Schr\"odinger} {Evolution} {Equation}},
journal = {Matemati\v{c}eskie zametki},
pages = {76--83},
publisher = {mathdoc},
volume = {105},
number = {1},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2019_105_1_a6/}
}
TY - JOUR AU - Sh. M. Nasibov TI - On the Collapse of Solutions of the Cauchy Problem for the Cubic Schr\"odinger Evolution Equation JO - Matematičeskie zametki PY - 2019 SP - 76 EP - 83 VL - 105 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2019_105_1_a6/ LA - ru ID - MZM_2019_105_1_a6 ER -
Sh. M. Nasibov. On the Collapse of Solutions of the Cauchy Problem for the Cubic Schr\"odinger Evolution Equation. Matematičeskie zametki, Tome 105 (2019) no. 1, pp. 76-83. http://geodesic.mathdoc.fr/item/MZM_2019_105_1_a6/