On the Collapse of Solutions of the Cauchy Problem for the Cubic Schr\"odinger Evolution Equation
Matematičeskie zametki, Tome 105 (2019) no. 1, pp. 76-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that, for some initial data, the solutions of the Cauchy problem for the cubic Schrödinger evolution equation blow up in finite time whose exact value is estimated from above. In addition, lower bounds for the blow-up rate of the solution in certain norms are obtained.
Keywords: Schrödinger equation, Cauchy problem, interpolation inequality.
@article{MZM_2019_105_1_a6,
     author = {Sh. M. Nasibov},
     title = {On the {Collapse} of {Solutions} of the {Cauchy} {Problem} for the {Cubic} {Schr\"odinger} {Evolution} {Equation}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {76--83},
     publisher = {mathdoc},
     volume = {105},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_105_1_a6/}
}
TY  - JOUR
AU  - Sh. M. Nasibov
TI  - On the Collapse of Solutions of the Cauchy Problem for the Cubic Schr\"odinger Evolution Equation
JO  - Matematičeskie zametki
PY  - 2019
SP  - 76
EP  - 83
VL  - 105
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_105_1_a6/
LA  - ru
ID  - MZM_2019_105_1_a6
ER  - 
%0 Journal Article
%A Sh. M. Nasibov
%T On the Collapse of Solutions of the Cauchy Problem for the Cubic Schr\"odinger Evolution Equation
%J Matematičeskie zametki
%D 2019
%P 76-83
%V 105
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_105_1_a6/
%G ru
%F MZM_2019_105_1_a6
Sh. M. Nasibov. On the Collapse of Solutions of the Cauchy Problem for the Cubic Schr\"odinger Evolution Equation. Matematičeskie zametki, Tome 105 (2019) no. 1, pp. 76-83. http://geodesic.mathdoc.fr/item/MZM_2019_105_1_a6/

[1] V. E. Zakharov, A. B. Shabat, “Tochnaya teoriya dvumernoi samofokusirovki i odnomernoi modulyatsii voln v nelineinykh sredakh”, ZhETF, 61:1 (1971), 118–134

[2] V. I. Lugovoi, A. M. Prokhorov, “Teoriya rasprostraneniya moschnogo lazernogo izlucheniya v nelineinoi srede”, UFN, 111:10 (1973), 203–247 | DOI

[3] H. Brezis, T. Gallouet, “Nonlinear Schrtsdinger evolution equations”, Nonlinear Anal., 4:4 (1980), 677–681 | DOI | MR | Zbl

[4] Sh. M. Nasibov, “Ob odnom nelineinom uravnenii tipa Shredingera”, Differents. uravneniya, 16:4 (1980), 660–670 | MR | Zbl

[5] S. N. Vlasov, V. A. Petrischev, V. I. Talanov, “Usrednennoe opisanie volnovykh puchkov v lineinykh sredakh i nelineinykh sredakh (metod momentov)”, Izv. vuzov. Radiofizika, 14:9 (1971), 1353–1363

[6] O. I. Kudryashov, “Ob osobennostyakh reshenii nelineinykh uravnenii tipa Ginzburga–Landau”, Sib. matem. zhurn., 16:4 (1975), 866–868 | MR | Zbl

[7] R. T. Classey, “On the blowing up of solutions to the Cauchy problem for nonlinear Schrodinger equations”, J. Math. Phys., 18:9 (1977), 1794–1797 | DOI | MR

[8] Sh. M. Nasibov, “O tochnoi konstante v odnom neravenstve Soboleva–Nirenberga i ee prilozhenii k uravneniyu Shredingera”, Izv. RAN. Ser. matem., 73:3 (2009), 127–150 | DOI | MR | Zbl

[9] Sh. M. Nasibov, “Ob optimalnykh konstantakh v nekotorykh neravenstvakh Soboleva i ikh prilozhenii k nelineinomu uravneniyu Shredingera”, Dokl. AN SSSR, 307:3 (1989), 538–542

[10] Sh. M. Nasibov, “Nekotorye zamechaniya o nekotorykh fundamentalnykh neravenstvakh Grossa–Soboleva, Khirshmana, Pauli–Geizenberga–Veila i neravenstve entropii”, Dokl. AN, 415:5 (2007), 589–591

[11] Sh. M. Nasibov, “Ob ustoichivosti, razrushenii, zatukhanii i samokanalizatsii reshenii odnogo nelineinogo uravneniya Shredingera”, Dokl. AN SSSR, 285:4 (1985), 807–811