On a Family of Residually Finite Groups
Matematičeskie zametki, Tome 105 (2019) no. 1, pp. 65-75

Voir la notice de l'article provenant de la source Math-Net.Ru

As is known, there is a finitely generated residually finite group (for short, a residually $\mathcal F$-group) whose extension by some finite group is not a residually $\mathcal F$-group. In the paper, it is shown that, nevertheless, every extension of a finite group by a finitely generated residually $\mathcal F$-group is a Hopf group, and every extension of a center-free finite group by a finitely generated residually $\mathcal F$-group is a residually $\mathcal F$-group. If a finitely generated residually $\mathcal F$-group $G$ is such that every extension of an arbitrary finite group by $G$ is a residually $\mathcal F$-group, then a descending HNN-extension of the group $G$ also has the same property, provided that it is a residually $\mathcal F$-group.
Keywords: residually finite groups, HNN-extensions of groups.
@article{MZM_2019_105_1_a5,
     author = {D. I. Moldavanskii},
     title = {On a {Family} of {Residually} {Finite} {Groups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {65--75},
     publisher = {mathdoc},
     volume = {105},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_105_1_a5/}
}
TY  - JOUR
AU  - D. I. Moldavanskii
TI  - On a Family of Residually Finite Groups
JO  - Matematičeskie zametki
PY  - 2019
SP  - 65
EP  - 75
VL  - 105
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_105_1_a5/
LA  - ru
ID  - MZM_2019_105_1_a5
ER  - 
%0 Journal Article
%A D. I. Moldavanskii
%T On a Family of Residually Finite Groups
%J Matematičeskie zametki
%D 2019
%P 65-75
%V 105
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_105_1_a5/
%G ru
%F MZM_2019_105_1_a5
D. I. Moldavanskii. On a Family of Residually Finite Groups. Matematičeskie zametki, Tome 105 (2019) no. 1, pp. 65-75. http://geodesic.mathdoc.fr/item/MZM_2019_105_1_a5/