On Lower Bounds for the Chromatic Number of Spheres
Matematičeskie zametki, Tome 105 (2019) no. 1, pp. 18-31

Voir la notice de l'article provenant de la source Math-Net.Ru

Estimates of the chromatic numbers of spheres are studied. The optimality of the choice of the parameters of the linear-algebraic method used to obtain these estimates is investigated. For the case of $(0,1)$-vectors, it is shown that the parameters chosen in previous results yield the best estimate. For the case of $(-1,0,1)$-vectors, the optimal values of the parameters are obtained; this leads to a significant refinement of the estimates of the chromatic numbers of spheres obtained earlier.
Keywords: chromatic number of spheres, linear-algebraic method, Frankl–Wilson theorem, Nelson–Hadwiger problem, distance graphs.
@article{MZM_2019_105_1_a2,
     author = {O. A. Kostina},
     title = {On {Lower} {Bounds} for the {Chromatic} {Number} of {Spheres}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {18--31},
     publisher = {mathdoc},
     volume = {105},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_105_1_a2/}
}
TY  - JOUR
AU  - O. A. Kostina
TI  - On Lower Bounds for the Chromatic Number of Spheres
JO  - Matematičeskie zametki
PY  - 2019
SP  - 18
EP  - 31
VL  - 105
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_105_1_a2/
LA  - ru
ID  - MZM_2019_105_1_a2
ER  - 
%0 Journal Article
%A O. A. Kostina
%T On Lower Bounds for the Chromatic Number of Spheres
%J Matematičeskie zametki
%D 2019
%P 18-31
%V 105
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_105_1_a2/
%G ru
%F MZM_2019_105_1_a2
O. A. Kostina. On Lower Bounds for the Chromatic Number of Spheres. Matematičeskie zametki, Tome 105 (2019) no. 1, pp. 18-31. http://geodesic.mathdoc.fr/item/MZM_2019_105_1_a2/