On Lower Bounds for the Chromatic Number of Spheres
Matematičeskie zametki, Tome 105 (2019) no. 1, pp. 18-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

Estimates of the chromatic numbers of spheres are studied. The optimality of the choice of the parameters of the linear-algebraic method used to obtain these estimates is investigated. For the case of $(0,1)$-vectors, it is shown that the parameters chosen in previous results yield the best estimate. For the case of $(-1,0,1)$-vectors, the optimal values of the parameters are obtained; this leads to a significant refinement of the estimates of the chromatic numbers of spheres obtained earlier.
Keywords: chromatic number of spheres, linear-algebraic method, Frankl–Wilson theorem, Nelson–Hadwiger problem, distance graphs.
@article{MZM_2019_105_1_a2,
     author = {O. A. Kostina},
     title = {On {Lower} {Bounds} for the {Chromatic} {Number} of {Spheres}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {18--31},
     publisher = {mathdoc},
     volume = {105},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_105_1_a2/}
}
TY  - JOUR
AU  - O. A. Kostina
TI  - On Lower Bounds for the Chromatic Number of Spheres
JO  - Matematičeskie zametki
PY  - 2019
SP  - 18
EP  - 31
VL  - 105
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_105_1_a2/
LA  - ru
ID  - MZM_2019_105_1_a2
ER  - 
%0 Journal Article
%A O. A. Kostina
%T On Lower Bounds for the Chromatic Number of Spheres
%J Matematičeskie zametki
%D 2019
%P 18-31
%V 105
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_105_1_a2/
%G ru
%F MZM_2019_105_1_a2
O. A. Kostina. On Lower Bounds for the Chromatic Number of Spheres. Matematičeskie zametki, Tome 105 (2019) no. 1, pp. 18-31. http://geodesic.mathdoc.fr/item/MZM_2019_105_1_a2/

[1] H. Hadwiger, “Ein Überdeckungssatz für den Euklidischen Raum”, Portugaliae Math., 4:3 (1944), 140–144 | MR | Zbl

[2] A. Soifer, The Mathematical Coloring Book, Springer, New York, 2009 | MR | Zbl

[3] A. M. Raigorodskii, “Cliques and cycles in distance graphs and graphs of diameters”, Discrete Geometry and Algebraic Combinatorics, Contemp. Math., 625, Amer. Math. Soc., Providence, RI, 2014, 93–109 | MR | Zbl

[4] A. M. Raigorodskii, “Coloring Distance Graphs and Graphs of Diameters”, Thirty Essays on Geometric Graph Theory, Springer, New York, 2013, 429–460 | MR | Zbl

[5] A. M. Raigorodskii, “Problema Borsuka i khromaticheskie chisla nekotorykh metricheskikh prostranstv”, UMN, 56:1 (337) (2001), 107–146 | DOI | MR | Zbl

[6] L. A. Székely, “Erdős on unit distances and the Szemerédi–Trotter theorems”, Paul Erdős and his Mathematics, II, Bolyai Soc. Math. Stud., 11, Janos Bolyai Math. Soc., Budapest, 2002, 649–666 | MR

[7] A. M. Raigorodskii, “Combinatorial geometry and coding theory”, Fund. Inform., 145:3 (2016), 359–369 | MR | Zbl

[8] D. Cherkashin, A. Kulikov, A. Raigorodskii, “On the chromatic numbers of small-dimensional Euclidean spaces”, Discrete Appl. Math., 243 (2018), 125–131 | DOI | MR | Zbl

[9] D. D. Cherkashin, A. M. Raigorodskii, “O khromaticheskikh chislakh prostranstv maloi razmernosti”, Dokl. AN, 472:1 (2017), 11–12 | DOI

[10] R. I. Prosanov, A. A. Sagdeev, A. M. Raigorodskii, “Uluchsheniya teoremy Frankla–Redlya i geometricheskie sledstviya”, Dokl. AN, 475:2 (2017), 137–139 | DOI

[11] D. G. Larman, C. A. Rogers, “The realization of distances within sets in Euclidean space”, Mathematika, 19:1 (1972), 1–24 | DOI | MR | Zbl

[12] P. Frankl, R. Wilson, “Intersection theorems with geometric consequences”, Combinatorica, 1:4 (1981), 357–368 | MR | Zbl

[13] A. M. Raigorodskii, “O khromaticheskom chisle prostranstva”, UMN, 55:2 (332) (2000), 147–148 | DOI | MR | Zbl

[14] P. Erdős, R. L. Graham, Problem proposed at the 6th Hungarian combinatorial conference, Eger, 1981

[15] G. J. Simmons, “On a problem of Erdős concerning a 3-coloring of the unit sphere”, Discrete Math., 8:1 (1974), 81–84 | DOI | MR

[16] G. J. Simmons, “The chromatic number of the sphere”, J. Austral. Math. Soc., 21:4 (1976), 473–480 | DOI | MR

[17] L. Lovaśz, “Self-dual polytopes and the chromatic number of distance graphs on the sphere”, Acta Sci. Math. (Szeged), 45:1-4 (1983), 317–323 | MR

[18] A. M. Raigorodskii, “O khromaticheskikh chislakh sfer v evklidovom prostranstve”, Dokl. AN, 432:2 (2010), 174–177 | MR

[19] A. M. Raigorodskii, “On the chromatic numbers of spheres in $\mathbb R^n$”, Combinatorica, 32:1 (2012), 111–123 | DOI | MR

[20] A. M. Raigorodskii, “K odnoi teoreme Lovasa o khromaticheskom chisle sfery”, Matem. zametki, 98:3 (2015), 470–471 | DOI | MR

[21] A. M. Raigorodskii, Lineino-algebraicheskii metod v kombinatorike, MTsNMO, M., 2015

[22] R. C. Baker, G. Harman, J. Pintz, “The difference between consecutive primes, II”, Proc. London Math. Soc., 83:3 (2001), 532–562 | DOI | MR

[23] C. A. Rogers, “Covering a sphere with spheres”, Mathematika, 10:2 (1963), 157–164 | DOI | MR

[24] E. I. Ponomarenko, A. M. Raigorodskii, “Uluchshenie teoremy Frankla–Uilsona o chisle reber gipergrafa s zapretami na peresecheniya”, Dokl. AN, 454:3 (2014), 268–269 | DOI

[25] E. I. Ponomarenko, A. M. Raigorodskii, “Novye otsenki v zadache o chisle reber gipergrafa s zapretami na peresecheniya”, Probl. peredachi inform., 49:4 (2013), 98–104

[26] E. I. Ponomarenko, A. M. Raigorodskii, “Novye verkhnie otsenki chisel nezavisimosti grafov s vershinami v $\{-1,0,1\}^n$ i ikh prilozheniya v zadachakh o khromaticheskikh chislakh distantsionnykh grafov”, Matem. zametki, 96:1 (2014), 138–147 | DOI | MR | Zbl