On Lower Bounds for the Chromatic Number of Spheres
Matematičeskie zametki, Tome 105 (2019) no. 1, pp. 18-31
Voir la notice de l'article provenant de la source Math-Net.Ru
Estimates of the chromatic numbers of spheres are studied. The optimality of the choice of the parameters of the linear-algebraic method used to obtain these estimates is investigated. For the case of $(0,1)$-vectors, it is shown that the parameters chosen in previous results yield the best estimate. For the case of $(-1,0,1)$-vectors, the optimal values of the parameters are obtained; this leads to a significant refinement of the estimates of the chromatic numbers of spheres obtained earlier.
Keywords:
chromatic number of spheres, linear-algebraic method, Frankl–Wilson theorem, Nelson–Hadwiger problem, distance graphs.
@article{MZM_2019_105_1_a2,
author = {O. A. Kostina},
title = {On {Lower} {Bounds} for the {Chromatic} {Number} of {Spheres}},
journal = {Matemati\v{c}eskie zametki},
pages = {18--31},
publisher = {mathdoc},
volume = {105},
number = {1},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2019_105_1_a2/}
}
O. A. Kostina. On Lower Bounds for the Chromatic Number of Spheres. Matematičeskie zametki, Tome 105 (2019) no. 1, pp. 18-31. http://geodesic.mathdoc.fr/item/MZM_2019_105_1_a2/