On an Identity with Binomial Coefficients
Matematičeskie zametki, Tome 105 (2019) no. 1, pp. 149-152.

Voir la notice de l'article provenant de la source Math-Net.Ru

Mots-clés : binomial coefficient
Keywords: identity, summation formula.
@article{MZM_2019_105_1_a14,
     author = {E. A. Karatsuba},
     title = {On an {Identity} with {Binomial} {Coefficients}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {149--152},
     publisher = {mathdoc},
     volume = {105},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_105_1_a14/}
}
TY  - JOUR
AU  - E. A. Karatsuba
TI  - On an Identity with Binomial Coefficients
JO  - Matematičeskie zametki
PY  - 2019
SP  - 149
EP  - 152
VL  - 105
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_105_1_a14/
LA  - ru
ID  - MZM_2019_105_1_a14
ER  - 
%0 Journal Article
%A E. A. Karatsuba
%T On an Identity with Binomial Coefficients
%J Matematičeskie zametki
%D 2019
%P 149-152
%V 105
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_105_1_a14/
%G ru
%F MZM_2019_105_1_a14
E. A. Karatsuba. On an Identity with Binomial Coefficients. Matematičeskie zametki, Tome 105 (2019) no. 1, pp. 149-152. http://geodesic.mathdoc.fr/item/MZM_2019_105_1_a14/

[1] E. A. Karatsuba, Probl. peredachi inform., 51:4 (2015), 78–91

[2] E. A. Karatsuba, On a Method of Evaluation of Zeta-Constants Based on One Number Theoretic Approach, 2018, arXiv: 1805.02076

[3] H. W. Gould, Combinatorial Identities, Binding, Morgantown, WV, 1972 | MR

[4] H. W. Gould, J. Quaintance, Combinatorial Identities for Stirling Numbers, World Sci. Publ., Singapore, 2015 | MR

[5] J. Choi, Abstr. Appl. Anal., 2014 (2014), 501906 | DOI | MR

[6] O. V. Sarmanov, B. A. Sevastyanov, V. E. Tarakanov, Matem. zametki, 11:1 (1972), 121–127 | MR | Zbl

[7] G. E. Andrews, Discrete Math., 11:2 (1975), 97–106 | DOI | MR | Zbl

[8] V. Strehl, Discrete Math., 136:1-3 (1994), 309–346 | DOI | MR | Zbl

[9] C. Elsner, Fibonacci Quart., 43 (2005), 31–45 | MR | Zbl

[10] V. P. Krivokolesko, Zhurn. SFU. Ser. Matem. i fiz., 2:2 (2009), 176–188

[11] A. Sofo, H. M. Srivastava, Ramanujan J., 25:1 (2011), 93–113 | DOI | MR | Zbl

[12] M. E. H. Ismail, D. Stanton, Ann. Combin., 16:4 (2012), 755–771 | DOI | MR | Zbl

[13] R. Witula, E. Hetmaniok, D. Slota, N. Gawronska, Int. J. Pure Appl. Math., 85:1 (2013), 171–178 | DOI

[14] H. Alzer, R. Chapman, Australasian J. Combin., 59:2 (2014), 333–336 | MR | Zbl

[15] V. V. Zudilin, Apéry's Theorem and Problems for the Values of Riemann's Zeta Function and Their $q$-Analogues, 2015, arXiv: 1312.6919