Semigroup Classification and Gelfand--Shilov Classification of Systems of Partial Differential Equations
Matematičeskie zametki, Tome 104 (2018) no. 6, pp. 895-911.

Voir la notice de l'article provenant de la source Math-Net.Ru

Two approaches to systems of linear partial differential equations are considered: the traditional approach based on the generalized Fourier transform and the semigroup approach, under which the system is considered as a particular case of an operator-differential equation. For these systems, the semigroup classification and the Gelfand–Shilov classification are compared.
Keywords: semigroup of operators, system of partial differential equations, abstract Cauchy problem
Mots-clés : Fourier transform, distribution.
@article{MZM_2018_104_6_a7,
     author = {I. V. Mel'nikova and U. A. Alekseeva},
     title = {Semigroup {Classification} and {Gelfand--Shilov} {Classification} of {Systems} of {Partial} {Differential} {Equations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {895--911},
     publisher = {mathdoc},
     volume = {104},
     number = {6},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_104_6_a7/}
}
TY  - JOUR
AU  - I. V. Mel'nikova
AU  - U. A. Alekseeva
TI  - Semigroup Classification and Gelfand--Shilov Classification of Systems of Partial Differential Equations
JO  - Matematičeskie zametki
PY  - 2018
SP  - 895
EP  - 911
VL  - 104
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_104_6_a7/
LA  - ru
ID  - MZM_2018_104_6_a7
ER  - 
%0 Journal Article
%A I. V. Mel'nikova
%A U. A. Alekseeva
%T Semigroup Classification and Gelfand--Shilov Classification of Systems of Partial Differential Equations
%J Matematičeskie zametki
%D 2018
%P 895-911
%V 104
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_104_6_a7/
%G ru
%F MZM_2018_104_6_a7
I. V. Mel'nikova; U. A. Alekseeva. Semigroup Classification and Gelfand--Shilov Classification of Systems of Partial Differential Equations. Matematičeskie zametki, Tome 104 (2018) no. 6, pp. 895-911. http://geodesic.mathdoc.fr/item/MZM_2018_104_6_a7/

[1] I. V. Melnikova, A. I. Filinkov, U. A. Anufrieva, “Abstract stochastic equations. I. Classical and distributional solutions”, J. Math. Sci. (New York), 111:2 (2002), 3430–3475 | MR | Zbl

[2] I. V. Melnikova, Stochastic Cauchy Problems in Infinite Dimensions. Regularized and Generalized Solutions, CRC Press, Boca Raton, FL, 2016 | MR | Zbl

[3] I. M. Gelfand, G. E. Shilov, Obobschennye funktsii. Vyp. 3. Nekotorye voprosy teorii differentsialnykh uravnenii, Fizmatgiz, M., 1958 | MR | Zbl

[4] U. A. Anufrieva, I. V. Melnikova, “Osobennosti i regulyarizatsiya nekorrektnykh zadach Koshi s differentsialnymi operatorami”, Differentsialnye uravneniya i teoriya polugrupp, SMFN, 14, RUDN, M., 2005, 3–156 | MR | Zbl

[5] K.-J. Engel, R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Springer-Verlag, Berlin, 1999 | MR | Zbl

[6] W. Arendt, Ch. J. K. Batty, M. Hieber, F. Neubrander, Vector-Valued Laplace Transform and Cauchy Problems, Birkhäuser Verlag, Basel, 2001 | MR

[7] I. V. Melnikova, A. Filinkov, The Cauchy Problem: Three Approaches, Chapman Hall/CRC Monogr. Surv. Pure Appl. Math., 120, Chapman Hall/CRC, Boca Raton, FL, 2001 | MR

[8] H. O. Fattorini, The Cauchy Problem, Addison-Wesley Publ., Reading, MA, 1983 | MR

[9] I. Cioranescu, “Local convoluted semigroups”, Lecture Notes in Pure and Appl. Math., 168, Marcel Dekker, New York, 1995, 107–122 | MR

[10] I. V. Melnikova, U. A. Alekseeva, “Weak regularized solutions to stochastic Cauchy problems”, CMSIM J., 2014, no. 1, 49–56

[11] J. Chazarain, “Problèmes de Cauchy abstraits et applications à quelques problèmes mixtes”, J. Funct. Anal., 7:3 (1971), 386–446 | DOI | MR | Zbl

[12] H. Komatsu, “Ultradistributions. I. Structure theorems and a characterization”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 20:1 (1973), 25–106 | MR | Zbl