Semigroup Classification and Gelfand--Shilov Classification of Systems of Partial Differential Equations
Matematičeskie zametki, Tome 104 (2018) no. 6, pp. 895-911
Voir la notice de l'article provenant de la source Math-Net.Ru
Two approaches to systems of linear partial differential equations are considered: the traditional approach based on the generalized Fourier transform and the semigroup approach, under which the system is considered as a particular case of an operator-differential equation. For these systems, the semigroup classification and the Gelfand–Shilov classification are compared.
Keywords:
semigroup of operators, system of partial differential equations, abstract Cauchy problem
Mots-clés : Fourier transform, distribution.
Mots-clés : Fourier transform, distribution.
@article{MZM_2018_104_6_a7,
author = {I. V. Mel'nikova and U. A. Alekseeva},
title = {Semigroup {Classification} and {Gelfand--Shilov} {Classification} of {Systems} of {Partial} {Differential} {Equations}},
journal = {Matemati\v{c}eskie zametki},
pages = {895--911},
publisher = {mathdoc},
volume = {104},
number = {6},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2018_104_6_a7/}
}
TY - JOUR AU - I. V. Mel'nikova AU - U. A. Alekseeva TI - Semigroup Classification and Gelfand--Shilov Classification of Systems of Partial Differential Equations JO - Matematičeskie zametki PY - 2018 SP - 895 EP - 911 VL - 104 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2018_104_6_a7/ LA - ru ID - MZM_2018_104_6_a7 ER -
%0 Journal Article %A I. V. Mel'nikova %A U. A. Alekseeva %T Semigroup Classification and Gelfand--Shilov Classification of Systems of Partial Differential Equations %J Matematičeskie zametki %D 2018 %P 895-911 %V 104 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2018_104_6_a7/ %G ru %F MZM_2018_104_6_a7
I. V. Mel'nikova; U. A. Alekseeva. Semigroup Classification and Gelfand--Shilov Classification of Systems of Partial Differential Equations. Matematičeskie zametki, Tome 104 (2018) no. 6, pp. 895-911. http://geodesic.mathdoc.fr/item/MZM_2018_104_6_a7/