Semigroup Classification and Gelfand--Shilov Classification of Systems of Partial Differential Equations
Matematičeskie zametki, Tome 104 (2018) no. 6, pp. 895-911

Voir la notice de l'article provenant de la source Math-Net.Ru

Two approaches to systems of linear partial differential equations are considered: the traditional approach based on the generalized Fourier transform and the semigroup approach, under which the system is considered as a particular case of an operator-differential equation. For these systems, the semigroup classification and the Gelfand–Shilov classification are compared.
Keywords: semigroup of operators, system of partial differential equations, abstract Cauchy problem
Mots-clés : Fourier transform, distribution.
@article{MZM_2018_104_6_a7,
     author = {I. V. Mel'nikova and U. A. Alekseeva},
     title = {Semigroup {Classification} and {Gelfand--Shilov} {Classification} of {Systems} of {Partial} {Differential} {Equations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {895--911},
     publisher = {mathdoc},
     volume = {104},
     number = {6},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_104_6_a7/}
}
TY  - JOUR
AU  - I. V. Mel'nikova
AU  - U. A. Alekseeva
TI  - Semigroup Classification and Gelfand--Shilov Classification of Systems of Partial Differential Equations
JO  - Matematičeskie zametki
PY  - 2018
SP  - 895
EP  - 911
VL  - 104
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_104_6_a7/
LA  - ru
ID  - MZM_2018_104_6_a7
ER  - 
%0 Journal Article
%A I. V. Mel'nikova
%A U. A. Alekseeva
%T Semigroup Classification and Gelfand--Shilov Classification of Systems of Partial Differential Equations
%J Matematičeskie zametki
%D 2018
%P 895-911
%V 104
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_104_6_a7/
%G ru
%F MZM_2018_104_6_a7
I. V. Mel'nikova; U. A. Alekseeva. Semigroup Classification and Gelfand--Shilov Classification of Systems of Partial Differential Equations. Matematičeskie zametki, Tome 104 (2018) no. 6, pp. 895-911. http://geodesic.mathdoc.fr/item/MZM_2018_104_6_a7/