Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2018_104_6_a5, author = {S. V. Konyagin}, title = {On the {Recovery} of an {Integer} {Vector} from {Linear} {Measurements}}, journal = {Matemati\v{c}eskie zametki}, pages = {863--871}, publisher = {mathdoc}, volume = {104}, number = {6}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2018_104_6_a5/} }
S. V. Konyagin. On the Recovery of an Integer Vector from Linear Measurements. Matematičeskie zametki, Tome 104 (2018) no. 6, pp. 863-871. http://geodesic.mathdoc.fr/item/MZM_2018_104_6_a5/
[1] M. Davenport, M. Duarte, Y. C. Eldar, G. Kutyniok, “Introduction to compressed sensing”, Compressed Sensing, Cambridge Univ. Press, Cambridge, 2012, 1–64 | MR
[2] M. Fornasier, H. Rauhut, “Compressive sensing”, Handbook of Mathematical Methods in Imaging, Springer-Verlag, Berlin, 2011, 187–228 | Zbl
[3] L. Fukshansky, D. Needell, B. Sudakov, An Algebraic Perspective on Integer Sparse Recovery, 2018, arXiv: 1801.01526
[4] J. Bourgain, V. H. Vu, Ph. M. Wood, “On the singularity probability of discrete random matrices”, J. Funct. Anal., 258:2 (2010), 559–603 | DOI | MR | Zbl
[5] I. M. Vinogradov, Osnovy teorii chisel, Nauka, M., 1981 | MR
[6] M. Henk, “Successive minima and lattice points”, Rend. Circ. Mat. Palermo (2) Suppl., 70 (2002), 377–384 | MR | Zbl