Finite Groups without Elements of Order~Six
Matematičeskie zametki, Tome 104 (2018) no. 5, pp. 717-724.

Voir la notice de l'article provenant de la source Math-Net.Ru

In 1977, in three papers by Podufalov, by Gordon, and by Fletcher, Stellmacher, and Stewart, finite simple groups without elements of order 6 were determined independently. In the present paper, using this result, we obtain a sufficiently complete description of the structure of a general finite group with this property.
Keywords: finite group, element of order 6, prime graph.
@article{MZM_2018_104_5_a8,
     author = {A. S. Kondrat'ev and N. A. Minigulov},
     title = {Finite {Groups} without {Elements} of {Order~Six}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {717--724},
     publisher = {mathdoc},
     volume = {104},
     number = {5},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_104_5_a8/}
}
TY  - JOUR
AU  - A. S. Kondrat'ev
AU  - N. A. Minigulov
TI  - Finite Groups without Elements of Order~Six
JO  - Matematičeskie zametki
PY  - 2018
SP  - 717
EP  - 724
VL  - 104
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_104_5_a8/
LA  - ru
ID  - MZM_2018_104_5_a8
ER  - 
%0 Journal Article
%A A. S. Kondrat'ev
%A N. A. Minigulov
%T Finite Groups without Elements of Order~Six
%J Matematičeskie zametki
%D 2018
%P 717-724
%V 104
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_104_5_a8/
%G ru
%F MZM_2018_104_5_a8
A. S. Kondrat'ev; N. A. Minigulov. Finite Groups without Elements of Order~Six. Matematičeskie zametki, Tome 104 (2018) no. 5, pp. 717-724. http://geodesic.mathdoc.fr/item/MZM_2018_104_5_a8/

[1] N. D. Podufalov, “Konechnye prostye gruppy bez elementov poryadka 6”, Algebra i logika, 16:2 (1977), 200–203 | MR | Zbl

[2] L. F. Fletcher, B. Stellmacher, W. B. Stewart, “Endliche Gruppen, die kein Element der Ordnung 6 enthalten”, Quart. J. Math. Oxford Ser. (2), 28:110 (1977), 143–154 | DOI | MR | Zbl

[3] L. M. Gordon, “Finite simple groups with no elements of order six”, Bull. Austral. Math. Soc., 17:2 (1977), 235–246 | DOI | MR | Zbl

[4] M. Suzuki, “On a class of doubly transitive groups”, Ann. Math., 75:1 (1962), 105–145 | DOI | MR | Zbl

[5] G. Higman, Odd Characterizations of Finite Simple Groups, Lecture Notes, University of Michigan, Michigan, 1968

[6] W. B. Stewart, “Groups having strongly self-centralizing 3-centralizers”, Proc. London Math. Soc. (3), 26 (1973), 653–680 | DOI | MR | Zbl

[7] A. S. Kondratev, “Konechnye gruppy s zadannymi svoistvami ikh grafov prostykh chisel”, Algebra i logika, 55:1 (2016), 113–120 | DOI

[8] D. Gorenstein, R. Lyons, R. Solomon, The Classification of the Finite Simple Groups, Amer. Math. Soc., Providence, RI, 1994 | MR | Zbl

[9] J. N. Bray, D. F. Holt, C. M. Roney-Dougal, The Maximal Subgroups of the Low-Dimensional Finite Classical Groups, Cambridge Univ. Press, Cambridge, 2013 | MR | Zbl

[10] M. Aschbacher, Finite Group Theory, Cambridge Univ. Press, Cambridge, 1986 | MR | Zbl

[11] J. N. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of Finite Groups, Clarendon Press, Oxford, 1985 | MR | Zbl

[12] D. Gorenstein, Finite Groups, Harper and Row, New York, 1968 | MR | Zbl

[13] V. D. Mazurov, “Kharakterizatsii konechnykh grupp mnozhestvami poryadkov ikh elementov”, Algebra i logika, 36:1 (1997), 37–53 | MR | Zbl

[14] B. Hartley, T. Meixner, “Finite soluble groups containing an element of prime order whose centralizer is small”, Arch. Math. (Basel), 36:3 (1981), 211–213 | DOI | MR | Zbl

[15] G. Higman, “Finite groups in which every element has prime power order”, J. London Math. Soc. (2), 32 (1957), 335–342 | DOI | MR | Zbl