Algebraic Properties of the Modular Lambda Function
Matematičeskie zametki, Tome 104 (2018) no. 5, pp. 680-693.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some properties of the modular lambda function that are similar to those of the modular invariant functions are proved. An algorithm for constructing the minimal polynomial for the values of the lambda function at the points of imaginary quadratic fields is presented; the numbers conjugate to these values are given.
Mots-clés : modular invariant, minimal polynomial.
Keywords: modular lambda function
@article{MZM_2018_104_5_a4,
     author = {O. I. Gritsenko},
     title = {Algebraic {Properties} of the {Modular} {Lambda} {Function}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {680--693},
     publisher = {mathdoc},
     volume = {104},
     number = {5},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_104_5_a4/}
}
TY  - JOUR
AU  - O. I. Gritsenko
TI  - Algebraic Properties of the Modular Lambda Function
JO  - Matematičeskie zametki
PY  - 2018
SP  - 680
EP  - 693
VL  - 104
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_104_5_a4/
LA  - ru
ID  - MZM_2018_104_5_a4
ER  - 
%0 Journal Article
%A O. I. Gritsenko
%T Algebraic Properties of the Modular Lambda Function
%J Matematičeskie zametki
%D 2018
%P 680-693
%V 104
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_104_5_a4/
%G ru
%F MZM_2018_104_5_a4
O. I. Gritsenko. Algebraic Properties of the Modular Lambda Function. Matematičeskie zametki, Tome 104 (2018) no. 5, pp. 680-693. http://geodesic.mathdoc.fr/item/MZM_2018_104_5_a4/

[1] S. Leng, Ellipticheskie funktsii, Nauka, M., 1984 | MR

[2] V. D. Mirokov, “O nekotorykh svoistvakh modulyarnogo mnogochlena dlya lyambda-funktsii”, Matem. zametki, 86:2 (2009), 237–255 | DOI | MR | Zbl

[3] R. Schertz, “Weber's class invariants revisited”, J. Théor. Nombres Bordeaux, 14:1 (2002), 325–343 | MR | Zbl

[4] P. Stevenhagen, H. W. Lenstra, “Chebotarev and his density theorem”, Math. Intelligencer, 18 (1996), 26–37 | MR | Zbl