Algebraic Properties of the Modular Lambda Function
Matematičeskie zametki, Tome 104 (2018) no. 5, pp. 680-693
Cet article a éte moissonné depuis la source Math-Net.Ru
Some properties of the modular lambda function that are similar to those of the modular invariant functions are proved. An algorithm for constructing the minimal polynomial for the values of the lambda function at the points of imaginary quadratic fields is presented; the numbers conjugate to these values are given.
Mots-clés :
modular invariant, minimal polynomial.
Keywords: modular lambda function
Keywords: modular lambda function
@article{MZM_2018_104_5_a4,
author = {O. I. Gritsenko},
title = {Algebraic {Properties} of the {Modular} {Lambda} {Function}},
journal = {Matemati\v{c}eskie zametki},
pages = {680--693},
year = {2018},
volume = {104},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2018_104_5_a4/}
}
O. I. Gritsenko. Algebraic Properties of the Modular Lambda Function. Matematičeskie zametki, Tome 104 (2018) no. 5, pp. 680-693. http://geodesic.mathdoc.fr/item/MZM_2018_104_5_a4/
[1] S. Leng, Ellipticheskie funktsii, Nauka, M., 1984 | MR
[2] V. D. Mirokov, “O nekotorykh svoistvakh modulyarnogo mnogochlena dlya lyambda-funktsii”, Matem. zametki, 86:2 (2009), 237–255 | DOI | MR | Zbl
[3] R. Schertz, “Weber's class invariants revisited”, J. Théor. Nombres Bordeaux, 14:1 (2002), 325–343 | MR | Zbl
[4] P. Stevenhagen, H. W. Lenstra, “Chebotarev and his density theorem”, Math. Intelligencer, 18 (1996), 26–37 | MR | Zbl