On Exponential Summability of Rectangular Partial Sums of Double Trigonometric Fourier Series
Matematičeskie zametki, Tome 104 (2018) no. 5, pp. 667-679
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we study the a.e. exponential strong summability problem for the rectangular partial sums of double trigonometric Fourier series of functions in $L\log L$.
Keywords:
double Fourier series, strong summability, exponential means.
@article{MZM_2018_104_5_a3,
author = {U. Goginava and G. Karagulian},
title = {On {Exponential} {Summability} of {Rectangular} {Partial} {Sums} of {Double} {Trigonometric} {Fourier} {Series}},
journal = {Matemati\v{c}eskie zametki},
pages = {667--679},
publisher = {mathdoc},
volume = {104},
number = {5},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2018_104_5_a3/}
}
TY - JOUR AU - U. Goginava AU - G. Karagulian TI - On Exponential Summability of Rectangular Partial Sums of Double Trigonometric Fourier Series JO - Matematičeskie zametki PY - 2018 SP - 667 EP - 679 VL - 104 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2018_104_5_a3/ LA - ru ID - MZM_2018_104_5_a3 ER -
U. Goginava; G. Karagulian. On Exponential Summability of Rectangular Partial Sums of Double Trigonometric Fourier Series. Matematičeskie zametki, Tome 104 (2018) no. 5, pp. 667-679. http://geodesic.mathdoc.fr/item/MZM_2018_104_5_a3/