Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2018_104_5_a3, author = {U. Goginava and G. Karagulian}, title = {On {Exponential} {Summability} of {Rectangular} {Partial} {Sums} of {Double} {Trigonometric} {Fourier} {Series}}, journal = {Matemati\v{c}eskie zametki}, pages = {667--679}, publisher = {mathdoc}, volume = {104}, number = {5}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2018_104_5_a3/} }
TY - JOUR AU - U. Goginava AU - G. Karagulian TI - On Exponential Summability of Rectangular Partial Sums of Double Trigonometric Fourier Series JO - Matematičeskie zametki PY - 2018 SP - 667 EP - 679 VL - 104 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2018_104_5_a3/ LA - ru ID - MZM_2018_104_5_a3 ER -
U. Goginava; G. Karagulian. On Exponential Summability of Rectangular Partial Sums of Double Trigonometric Fourier Series. Matematičeskie zametki, Tome 104 (2018) no. 5, pp. 667-679. http://geodesic.mathdoc.fr/item/MZM_2018_104_5_a3/
[1] L. Fejér, “Untersuchungen über Fouriersche Reihen”, Math. Ann., 58 (1904), 51–69 | MR | Zbl
[2] H. Lebesgue, “Recherches sur la sommabilite forte des series de Fourier”, Math. Ann., 61 (1905), 251–280 | DOI | MR | Zbl
[3] G. H. Hardy, J. E. Littlewood, “Sur la series de Fourier d'une fonction a carre sommable”, Comptes Rendus (Paris), 156 (1913), 1307–1309 | Zbl
[4] J. Marcinkiewicz, “Sur une methode remarquable de sommation des series doublefes de Fourier”, Ann. Scuola Norm. Sup. Pisa, 8 (1939), 149–160 | MR | Zbl
[5] A. Zygmund, Trigonometric Series, Cambridge Univ. Press, Cambridge, 1959 | MR | Zbl
[6] K. I. Oskolkov, “O silnoi summiruemosti ryadov Fure”, Issledovaniya po teorii funktsii mnogikh deistvitelnykh peremennykh i priblizheniyu funktsii, Tr. MIAN SSSR, 172, 1985, 280–290 | MR | Zbl
[7] V. A. Rodin, “The space BMO and strong means of Fourier series”, Anal. Math., 16:4 (1990), 291–302 | DOI | MR | Zbl
[8] G. A. Karagulyan, “On the divergence of strong $\Phi$-means of Fourier series”, J. Contemp. Math. Anal., 26:2 (1991), 66–69 | MR | Zbl
[9] G. A. Karagulyan, “Vsyudu raskhodyaschiesya $\Phi $-srednie ryadov Fure”, Matem. zametki, 80:1 (2006), 50–59 | DOI | MR | Zbl
[10] B. Jessen, J. Marcinkiewicz, A. Zygmund, “Note on the differentiability of multiple integrals”, Fund. Math., 25 (1935), 217–234 | DOI | MR | Zbl
[11] L. D. Gogoladze, “O silnoi summiruemosti pochti vsyudu”, Matem. sb., 135 (177):2 (1988), 158–168 | MR | Zbl
[12] F. Schipp, “Über die starke Summation von Walsh–Fourier Reihen”, Acta Sci. Math. (Szeged), 30 (1969), 77–87 | MR | Zbl
[13] F. Schipp, “On strong approximation of Walsh–Fourier series”, Magyar Tud. Akad. Mat. Fiz. Oszt. Közl., 19 (1969), 101–111 | MR
[14] F. Schipp, N. X. Ky, “On strong summability of polynomial expansions”, Anal. Math., 12:2 (1986), 115–127 | DOI | MR | Zbl
[15] L. Leindler, “On the strong approximation of Fourier series”, Acta Sci. Math. (Szeged), 38 (1976), 317–324 | MR | Zbl
[16] L. Leindler, “Strong approximation and classes of functions”, Mitt. Math. Sem. Giessen, 132 (1978), 29–38 | MR | Zbl
[17] L. Leindler, Strong Approximation by Fourier Series, Akademiai Kiado, Budapest, 1985 | MR | Zbl
[18] L. Leindler, “Über die Approximation im starken Sinne”, Acta Math. Acad. Sci. Hungar., 16 (1965), 255–262 | DOI | MR | Zbl
[19] V. Totik, “On the strong approximation of Fourier series”, Acta Math. Acad. Sci. Hungar., 35:1-2 (1980), 151–172 | DOI | MR | Zbl
[20] V. Totik, “On the strong approximation of Fourier series”, Acta Math. Acad. Sci. Hungar., 35:1-2 (1980), 151–172 | DOI | MR | Zbl
[21] V. Totik, “On the generalization of Fejér's summation theorem”, Functions, Series, Operators, Colloq. Math. Soc. János Bolyai, 35, North Holland, Amsterdam–Oxford–New York, 1983, 1195–1199 | MR
[22] V. Totik, “Notes on Fourier series: strong approximation”, J. Approx. Theory, 43 (1985), 105–111 | DOI | MR | Zbl
[23] U. Goginava, L. Gogoladze, “Strong approximation by Marcinkiewicz means of double Walsh–Fourier series”, Constr. Approx., 35:1 (2012), 1–19 | DOI | MR | Zbl
[24] U. Goginava, L. Gogoladze, “Strong approximation of double Walsh–Fourier series”, Studia Sci. Math. Hungar., 49:2 (2012), 170–188 | MR | Zbl
[25] U. Goginava, L. Gogoladze, G. Karagulyan, “BMO-estimation and almost everywhere exponential summability of quadratic partial sums of double Fourier series”, Constr. Approx., 40:1 (2014), 105–120 | DOI | MR | Zbl
[26] G. Gát, U. Goginava, G. Karagulyan, “Almost everywhere strong summability of Marcinkiewicz means of double Walsh–Fourier series”, Anal. Math., 40:4 (2014), 243–266 | DOI | MR | Zbl
[27] G. Gát, U. Goginava, G. Karagulyan, “On everywhere divergence of the strong $\Phi$-means of Walsh–Fourier series”, J. Math. Anal. Appl., 421:1 (2015), 206–214 | DOI | MR | Zbl
[28] F. Weisz, “Strong summability of more-dimensional Ciesielski–Fourier series”, East J. Approx., 10:3 (2004), 333–354 | MR | Zbl
[29] F. Weisz, “Lebesgue points of double Fourier series and strong summability”, J. Math. Anal. Appl., 432:1 (2015), 441–462 | DOI | MR | Zbl
[30] F. Weisz, “Lebesgue points of two-dimensional Fourier transforms and strong summability”, J. Fourier Anal. Appl., 21:4 (2015), 885–914 | DOI | MR | Zbl
[31] F. Weisz, “Strong summability of Fourier transforms at Lebesgue points and Wiener amalgam spaces”, J. Funct. Spaces, 2015, 420750 | MR | Zbl
[32] O. D. Gabisoniya, “O tochkakh silnoi summiruemosti ryadov Fure”, Matem. zametki, 14:5 (1973), 615–626 | MR | Zbl
[33] F. Schipp, “On the strong summability of Walsh series”, Publ. Math. Debrecen, 52:3-4 (1998), 611–633 | MR | Zbl
[34] M. A. Krasnoselskii, Ya. B. Rutitskii, Vypuklye funktsii i prostranstva Orlicha, Fizmatgiz, M., 1958 | MR | Zbl