The Dirichlet Problem for an Elliptic System of Second-Order Equations with Constant Real Coefficients in the Plane
Matematičeskie zametki, Tome 104 (2018) no. 5, pp. 659-666.

Voir la notice de l'article provenant de la source Math-Net.Ru

A solution of the Dirichlet problem for an elliptic system of equations with constant coefficients and simple complex characteristics in the plane is expressed as a double-layer potential. The boundary-value problem is solved in a bounded simply connected domain with Lyapunov boundary under the assumption that the Lopatinskii condition holds. It is shown how this representation is modified in the case of multiple roots of the characteristic equation. The boundary-value problem is reduced to a system of Fredholm equations of the second kind. For a Hölder boundary, the differential properties of the solution are studied.
Keywords: ellipticity, simple complex characteristics.
@article{MZM_2018_104_5_a2,
     author = {Yu. A. Bogan},
     title = {The {Dirichlet} {Problem} for an {Elliptic} {System} of {Second-Order} {Equations} with {Constant} {Real} {Coefficients} in the {Plane}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {659--666},
     publisher = {mathdoc},
     volume = {104},
     number = {5},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_104_5_a2/}
}
TY  - JOUR
AU  - Yu. A. Bogan
TI  - The Dirichlet Problem for an Elliptic System of Second-Order Equations with Constant Real Coefficients in the Plane
JO  - Matematičeskie zametki
PY  - 2018
SP  - 659
EP  - 666
VL  - 104
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_104_5_a2/
LA  - ru
ID  - MZM_2018_104_5_a2
ER  - 
%0 Journal Article
%A Yu. A. Bogan
%T The Dirichlet Problem for an Elliptic System of Second-Order Equations with Constant Real Coefficients in the Plane
%J Matematičeskie zametki
%D 2018
%P 659-666
%V 104
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_104_5_a2/
%G ru
%F MZM_2018_104_5_a2
Yu. A. Bogan. The Dirichlet Problem for an Elliptic System of Second-Order Equations with Constant Real Coefficients in the Plane. Matematičeskie zametki, Tome 104 (2018) no. 5, pp. 659-666. http://geodesic.mathdoc.fr/item/MZM_2018_104_5_a2/

[1] Ya. B. Lopatinskii, “Ob odnom sposobe privedeniya granichnykh zadach dlya sistemy differentsialnykh uravnenii ellipticheskogo tipa k regulyarnym integralnym uravneniyam”, Ukr. matem. zhurn., 5 (1953), 123–151 | MR

[2] A. V. Bitsadze, Kraevye zadachi dlya ellipticheskikh uravnenii vtorogo poryadka, Nauka, M., 1966 | MR

[3] I. N. Vekua, Obobschennye analiticheskie funktsii, Fizmatlit, M., 1959 | MR | Zbl

[4] G. Fichera, “Linear elliptic equations of higher order in two independent variables and singular integral equations, with applications to anisotropic inhomogeneous elasticity”, Partial Differential Equations and Continuum Mechanics, Wisconsin Press, Madison, 1961, 55–80 | MR | Zbl

[5] S. Agmon, “Multiple layer potentials and the Dirichlet problem for higher order elliptic equations in the plane”, Comm. Pure Appl. Math., 10 (1957), 197–239 | DOI | MR

[6] O. I. Panich, “Ekvivalentnaya regulyarizatsiya i razreshimost normalno razreshimykh kraevykh zadach s nulevym indeksom dlya poligarmonicheskikh uravnenii i silno ellipticheskikh sistem vtorogo pryadka na ploskosti”, Sib. matem. zhurn., 7 (1966), 591–619 | MR | Zbl

[7] A. P. Soldatov, “Metod teorii funktsii v kraevykh zadachakh na ploskosti. I. Gladkii sluchai”, Izv. AN SSSR. Ser. matem., 55:5 (1991), 1070–1100 | MR | Zbl

[8] A. P. Soldatov, “Metod teorii funktsii v ellipticheskikh zadachakh na ploskosti. II. Kusochno gladkii sluchai”, Izv. RAN. Ser. matem., 56:3 (1992), 566–604 | MR | Zbl

[9] S. G. Mikhlin, Integralnye uravneniya i ikh prilozheniya k nekotorym problemam mekhaniki, matematicheskoi fiziki i tekhniki, OGIZ, M., 1947 | MR

[10] D. I. Sherman, “K resheniyu ploskoi zadachi teorii uprugosti dlya anizotropnoi sredy”, Prikl. matem. mekh., 6 (1942), 509–514 | MR | Zbl

[11] A. I. Kostrikin, Vvedenie v algebru, Nauka, M., 1977 | MR

[12] G. E. Shilov, Matematicheskii analiz. Vtoroi spetsialnyi kurs, Nauka, M., 1965 | MR