Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2018_104_5_a19, author = {M. V. Tryamkin}, title = {The {Sub-Riemannian} {Curvature} of {Curves} in the {Borel} {Subgroup} of the {Group} $\mathrm{SL}(2,\mathbb R)$}, journal = {Matemati\v{c}eskie zametki}, pages = {796--800}, publisher = {mathdoc}, volume = {104}, number = {5}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2018_104_5_a19/} }
TY - JOUR AU - M. V. Tryamkin TI - The Sub-Riemannian Curvature of Curves in the Borel Subgroup of the Group $\mathrm{SL}(2,\mathbb R)$ JO - Matematičeskie zametki PY - 2018 SP - 796 EP - 800 VL - 104 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2018_104_5_a19/ LA - ru ID - MZM_2018_104_5_a19 ER -
M. V. Tryamkin. The Sub-Riemannian Curvature of Curves in the Borel Subgroup of the Group $\mathrm{SL}(2,\mathbb R)$. Matematičeskie zametki, Tome 104 (2018) no. 5, pp. 796-800. http://geodesic.mathdoc.fr/item/MZM_2018_104_5_a19/
[1] A. Agrachev, D. Barilari, L. Rizzi, Curvature: A Variational Approach, 2015, arXiv: 1306.5318
[2] M. Gromov, Carnot-Carathéodory Spaces Seen From Within, Birkhäuser Verlag, Basel, 1996 | MR
[3] S. D. Pauls, Geom. Dedicata, 104 (2004), 201–231 | MR | Zbl
[4] L. Capogna, D. Danielli, S. D. Pauls, J. T. Tyson, An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem, Birkhäuser Verlag, Basel, 2007 | MR | Zbl
[5] G. Citti, M. Manfredini, Potential Anal., 25:2 (2006), 147–164 | MR | Zbl
[6] Z. M. Balogh, J. T. Tyson, E. Vecchi, Math. Z., 287:1-2 (2017), 1–38 | MR | Zbl
[7] A. Agrachev, D. Barilari, J. Dynam. Control Systems, 18:1 (2012), 21–44 | MR | Zbl
[8] J. M. Lee, Riemannian Manifolds: An Introduction to Curvature, Springer, New York, 1997 | MR | Zbl