The Sub-Riemannian Curvature of Curves in the Borel Subgroup of the Group $\mathrm{SL}(2,\mathbb R)$
Matematičeskie zametki, Tome 104 (2018) no. 5, pp. 796-800.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: special linear group, sub-Riemannian structure, Riemann approximation, sub-Riemannian curvature.
@article{MZM_2018_104_5_a19,
     author = {M. V. Tryamkin},
     title = {The {Sub-Riemannian} {Curvature} of {Curves} in the {Borel} {Subgroup} of the {Group} $\mathrm{SL}(2,\mathbb R)$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {796--800},
     publisher = {mathdoc},
     volume = {104},
     number = {5},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_104_5_a19/}
}
TY  - JOUR
AU  - M. V. Tryamkin
TI  - The Sub-Riemannian Curvature of Curves in the Borel Subgroup of the Group $\mathrm{SL}(2,\mathbb R)$
JO  - Matematičeskie zametki
PY  - 2018
SP  - 796
EP  - 800
VL  - 104
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_104_5_a19/
LA  - ru
ID  - MZM_2018_104_5_a19
ER  - 
%0 Journal Article
%A M. V. Tryamkin
%T The Sub-Riemannian Curvature of Curves in the Borel Subgroup of the Group $\mathrm{SL}(2,\mathbb R)$
%J Matematičeskie zametki
%D 2018
%P 796-800
%V 104
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_104_5_a19/
%G ru
%F MZM_2018_104_5_a19
M. V. Tryamkin. The Sub-Riemannian Curvature of Curves in the Borel Subgroup of the Group $\mathrm{SL}(2,\mathbb R)$. Matematičeskie zametki, Tome 104 (2018) no. 5, pp. 796-800. http://geodesic.mathdoc.fr/item/MZM_2018_104_5_a19/

[1] A. Agrachev, D. Barilari, L. Rizzi, Curvature: A Variational Approach, 2015, arXiv: 1306.5318

[2] M. Gromov, Carnot-Carathéodory Spaces Seen From Within, Birkhäuser Verlag, Basel, 1996 | MR

[3] S. D. Pauls, Geom. Dedicata, 104 (2004), 201–231 | MR | Zbl

[4] L. Capogna, D. Danielli, S. D. Pauls, J. T. Tyson, An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem, Birkhäuser Verlag, Basel, 2007 | MR | Zbl

[5] G. Citti, M. Manfredini, Potential Anal., 25:2 (2006), 147–164 | MR | Zbl

[6] Z. M. Balogh, J. T. Tyson, E. Vecchi, Math. Z., 287:1-2 (2017), 1–38 | MR | Zbl

[7] A. Agrachev, D. Barilari, J. Dynam. Control Systems, 18:1 (2012), 21–44 | MR | Zbl

[8] J. M. Lee, Riemannian Manifolds: An Introduction to Curvature, Springer, New York, 1997 | MR | Zbl