New Criteria for the Existence of a Continuous $\varepsilon$-Selection
Matematičeskie zametki, Tome 104 (2018) no. 5, pp. 745-754.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study sets admitting a continuous selection of near-best approximations and characterize those sets in Banach spaces for which there exists a continuous $\varepsilon$-selection for each $\varepsilon>0$. The characterization is given in terms of $P$-cell-likeness and similar properties. In particular, we show that a closed uniqueness set in a uniformly convex space admits a continuous $\varepsilon$-selection for each $\varepsilon>0$ if and only if it is $\mathring{B}$-approximately trivial. We also obtain a fixed point theorem.
Keywords: continuous $\varepsilon$-selection, fixed point.
@article{MZM_2018_104_5_a11,
     author = {I. G. Tsar'kov},
     title = {New {Criteria} for the {Existence} of a {Continuous} $\varepsilon${-Selection}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {745--754},
     publisher = {mathdoc},
     volume = {104},
     number = {5},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_104_5_a11/}
}
TY  - JOUR
AU  - I. G. Tsar'kov
TI  - New Criteria for the Existence of a Continuous $\varepsilon$-Selection
JO  - Matematičeskie zametki
PY  - 2018
SP  - 745
EP  - 754
VL  - 104
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_104_5_a11/
LA  - ru
ID  - MZM_2018_104_5_a11
ER  - 
%0 Journal Article
%A I. G. Tsar'kov
%T New Criteria for the Existence of a Continuous $\varepsilon$-Selection
%J Matematičeskie zametki
%D 2018
%P 745-754
%V 104
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_104_5_a11/
%G ru
%F MZM_2018_104_5_a11
I. G. Tsar'kov. New Criteria for the Existence of a Continuous $\varepsilon$-Selection. Matematičeskie zametki, Tome 104 (2018) no. 5, pp. 745-754. http://geodesic.mathdoc.fr/item/MZM_2018_104_5_a11/

[1] I. G. Tsarkov, “O svyaznosti nekotorykh klassov mnozhestv v banakhovykh prostranstvakh”, Matem. zametki, 40:2 (1986), 174–196 | MR | Zbl

[2] K. S. Ryutin, “Nepreryvnost operatorov obobschennogo ratsionalnogo priblizheniya v prostranstve $L_1[0;1]$”, Matem. zametki, 73:1 (2003), 148–153 | DOI | MR | Zbl

[3] S. V. Konyagin, “O nepreryvnykh operatorakh obobschennogo ratsionalnogo priblizheniya”, Matem. zametki, 44:3 (1988), 404 | MR | Zbl

[4] I. G. Tsarkov, “Svoistva mnozhestv, obladayuschikh nepreryvnoi vyborkoi iz operatora $P^\delta$”, Matem. zametki, 48:4 (1990), 122–131 | MR | Zbl

[5] I. G. Tsarkov, “Svoistva mnozhestv, obladayuschikh ustoichivoi $\varepsilon$-vyborkoi”, Matem. zametki, 89:4 (2011), 608–613 | DOI | MR

[6] K. S. Ryutin, “Ravnomernaya nepreryvnost obobschennykh ratsionalnykh priblizhenii”, Matem. zametki, 71:2 (2002), 261–270 | DOI | MR | Zbl

[7] E. D. Livshits, “O pochti nailuchshem priblizhenii kusochno-polinomialnymi funktsiyami v prostranstve $C[0,1]$”, Matem. zametki, 78:4 (2005), 629–633 | DOI | MR | Zbl

[8] E. D. Livshits, “Ob ustoichivosti operatora $\varepsilon$-proektsii na mnozhestvo splainov v prostranstve $C[0,1]$”, Izv. RAN. Ser. matem., 67:1 (2003), 99–130 | DOI | MR | Zbl

[9] E. D. Livshitz, “Continuous selection of operators of almost best approximation by splines in the space $L_p[0,1]$”, Russ. J. Math. Phys., 12:2 (2005), 215–218 | MR

[10] A. R. Alimov, I. G. Tsarkov, “Svyaznost i drugie geometricheskie svoistva solnts i chebyshevskikh mnozhestv”, Fundament. i prikl. matem., 19:4 (2014), 21–91 | MR

[11] A. R. Alimov, “Monotonnaya lineinaya svyaznost chebyshevskikh mnozhestv v prostranstve $C(Q)$”, Matem. sb., 197:9 (2006), 3–18 | DOI | MR | Zbl

[12] A. R. Alimov, I. G. Tsarkov, “Svyaznost i solnechnost v zadachakh nailuchshego i pochti nailuchshego priblizheniya”, UMN, 71:1 (427) (2016), 3–84 | DOI | MR | Zbl

[13] I. G. Tsarkov, “Nepreryvnaya $\varepsilon$-vyborka”, Matem. sb., 207:2 (2016), 123–142 | DOI | MR | Zbl

[14] A. R. Alimov, “Monotonnaya lineinaya svyaznost i solnechnost svyaznykh po Mengeru mnozhestv v banakhovykh prostranstvakh”, Izv. RAN. Ser. matem., 78:4 (2014), 3–18 | DOI | MR | Zbl

[15] I. G. Tsarkov, “Lokalnaya i globalnaya nepreryvnaya $\varepsilon$-vyborka”, Izv. RAN. Ser. matem., 80:2 (2016), 165–184 | DOI | MR | Zbl

[16] I. G. Tsarkov, “Nepreryvnye vyborki iz mnozhestva blizhaishikh i pochti blizhaishikh tochek”, Dokl. AN, 475:4 (2017), 373–376 | MR

[17] I. G. Tsarkov, “Nepreryvnaya vyborka iz mnogoznachnykh otobrazhenii”, Izv. RAN. Ser. matem., 81:3 (2017), 189–216 | DOI | MR

[18] I. G. Tsarkov, “Mnozhestva, obladayuschie nepreryvnoi vyborkoi iz operatora pochti nailuchshego priblizheniya”, Sovremennye problemy matematiki i mekhaniki, 9, no. 2, Izd-vo Mosk. un-ta, 2013, 54–58

[19] I. G. Tsarkov, “Nekotorye prilozheniya geometricheskoi teorii priblizheniya”, Differentsialnye uravneniya. Matematicheskii analiz, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 143, VINITI RAN, M., 2017, 63–80

[20] A. L. Brown, “On the connectedness properties of suns in finite dimensional spaces”, Workshop/Miniconference on Functional Analysis and Optimization, Proc. Centre Math. Anal. Austral. Nat. Univ.,, 20, Austral. Nat. Univ., Canberra, 1988, 1–15 | MR | Zbl

[21] A. R. Alimov, “Monotonnaya lineinaya svyaznost i solnechnost svyaznykh po Mengeru mnozhestv v banakhovykh prostranstvakh”, Izv. RAN. Ser. matem., 78:4 (2014), 3–18 | DOI | MR | Zbl

[22] A. V. Marinov, “Konstanty Lipshitsa operatora metricheskogo $\varepsilon$-proektirovaniya v prostranstvakh s zadannymi modulyami vypuklosti i gladkosti”, Izv. RAN. Ser. matem., 62:2 (1998), 103–130 | DOI | MR | Zbl

[23] L. Górniewicz, Topological Fixed Point Theory of Multivalued Mappings, Springer, Dordrecht, 2006 | MR | Zbl