Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2018_104_5_a11, author = {I. G. Tsar'kov}, title = {New {Criteria} for the {Existence} of a {Continuous} $\varepsilon${-Selection}}, journal = {Matemati\v{c}eskie zametki}, pages = {745--754}, publisher = {mathdoc}, volume = {104}, number = {5}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2018_104_5_a11/} }
I. G. Tsar'kov. New Criteria for the Existence of a Continuous $\varepsilon$-Selection. Matematičeskie zametki, Tome 104 (2018) no. 5, pp. 745-754. http://geodesic.mathdoc.fr/item/MZM_2018_104_5_a11/
[1] I. G. Tsarkov, “O svyaznosti nekotorykh klassov mnozhestv v banakhovykh prostranstvakh”, Matem. zametki, 40:2 (1986), 174–196 | MR | Zbl
[2] K. S. Ryutin, “Nepreryvnost operatorov obobschennogo ratsionalnogo priblizheniya v prostranstve $L_1[0;1]$”, Matem. zametki, 73:1 (2003), 148–153 | DOI | MR | Zbl
[3] S. V. Konyagin, “O nepreryvnykh operatorakh obobschennogo ratsionalnogo priblizheniya”, Matem. zametki, 44:3 (1988), 404 | MR | Zbl
[4] I. G. Tsarkov, “Svoistva mnozhestv, obladayuschikh nepreryvnoi vyborkoi iz operatora $P^\delta$”, Matem. zametki, 48:4 (1990), 122–131 | MR | Zbl
[5] I. G. Tsarkov, “Svoistva mnozhestv, obladayuschikh ustoichivoi $\varepsilon$-vyborkoi”, Matem. zametki, 89:4 (2011), 608–613 | DOI | MR
[6] K. S. Ryutin, “Ravnomernaya nepreryvnost obobschennykh ratsionalnykh priblizhenii”, Matem. zametki, 71:2 (2002), 261–270 | DOI | MR | Zbl
[7] E. D. Livshits, “O pochti nailuchshem priblizhenii kusochno-polinomialnymi funktsiyami v prostranstve $C[0,1]$”, Matem. zametki, 78:4 (2005), 629–633 | DOI | MR | Zbl
[8] E. D. Livshits, “Ob ustoichivosti operatora $\varepsilon$-proektsii na mnozhestvo splainov v prostranstve $C[0,1]$”, Izv. RAN. Ser. matem., 67:1 (2003), 99–130 | DOI | MR | Zbl
[9] E. D. Livshitz, “Continuous selection of operators of almost best approximation by splines in the space $L_p[0,1]$”, Russ. J. Math. Phys., 12:2 (2005), 215–218 | MR
[10] A. R. Alimov, I. G. Tsarkov, “Svyaznost i drugie geometricheskie svoistva solnts i chebyshevskikh mnozhestv”, Fundament. i prikl. matem., 19:4 (2014), 21–91 | MR
[11] A. R. Alimov, “Monotonnaya lineinaya svyaznost chebyshevskikh mnozhestv v prostranstve $C(Q)$”, Matem. sb., 197:9 (2006), 3–18 | DOI | MR | Zbl
[12] A. R. Alimov, I. G. Tsarkov, “Svyaznost i solnechnost v zadachakh nailuchshego i pochti nailuchshego priblizheniya”, UMN, 71:1 (427) (2016), 3–84 | DOI | MR | Zbl
[13] I. G. Tsarkov, “Nepreryvnaya $\varepsilon$-vyborka”, Matem. sb., 207:2 (2016), 123–142 | DOI | MR | Zbl
[14] A. R. Alimov, “Monotonnaya lineinaya svyaznost i solnechnost svyaznykh po Mengeru mnozhestv v banakhovykh prostranstvakh”, Izv. RAN. Ser. matem., 78:4 (2014), 3–18 | DOI | MR | Zbl
[15] I. G. Tsarkov, “Lokalnaya i globalnaya nepreryvnaya $\varepsilon$-vyborka”, Izv. RAN. Ser. matem., 80:2 (2016), 165–184 | DOI | MR | Zbl
[16] I. G. Tsarkov, “Nepreryvnye vyborki iz mnozhestva blizhaishikh i pochti blizhaishikh tochek”, Dokl. AN, 475:4 (2017), 373–376 | MR
[17] I. G. Tsarkov, “Nepreryvnaya vyborka iz mnogoznachnykh otobrazhenii”, Izv. RAN. Ser. matem., 81:3 (2017), 189–216 | DOI | MR
[18] I. G. Tsarkov, “Mnozhestva, obladayuschie nepreryvnoi vyborkoi iz operatora pochti nailuchshego priblizheniya”, Sovremennye problemy matematiki i mekhaniki, 9, no. 2, Izd-vo Mosk. un-ta, 2013, 54–58
[19] I. G. Tsarkov, “Nekotorye prilozheniya geometricheskoi teorii priblizheniya”, Differentsialnye uravneniya. Matematicheskii analiz, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 143, VINITI RAN, M., 2017, 63–80
[20] A. L. Brown, “On the connectedness properties of suns in finite dimensional spaces”, Workshop/Miniconference on Functional Analysis and Optimization, Proc. Centre Math. Anal. Austral. Nat. Univ.,, 20, Austral. Nat. Univ., Canberra, 1988, 1–15 | MR | Zbl
[21] A. R. Alimov, “Monotonnaya lineinaya svyaznost i solnechnost svyaznykh po Mengeru mnozhestv v banakhovykh prostranstvakh”, Izv. RAN. Ser. matem., 78:4 (2014), 3–18 | DOI | MR | Zbl
[22] A. V. Marinov, “Konstanty Lipshitsa operatora metricheskogo $\varepsilon$-proektirovaniya v prostranstvakh s zadannymi modulyami vypuklosti i gladkosti”, Izv. RAN. Ser. matem., 62:2 (1998), 103–130 | DOI | MR | Zbl
[23] L. Górniewicz, Topological Fixed Point Theory of Multivalued Mappings, Springer, Dordrecht, 2006 | MR | Zbl