Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2018_104_4_a0, author = {A. Yu. Anikin and S. Yu. Dobrokhotov and V. E. Nazaikinskii}, title = {Simple {Asymptotics} for a {Generalized} {Wave} {Equation} with {Degenerating} {Velocity} and {Their} {Applications} in the {Linear} {Long} {Wave} {Run-Up} {Problem}}, journal = {Matemati\v{c}eskie zametki}, pages = {483--504}, publisher = {mathdoc}, volume = {104}, number = {4}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2018_104_4_a0/} }
TY - JOUR AU - A. Yu. Anikin AU - S. Yu. Dobrokhotov AU - V. E. Nazaikinskii TI - Simple Asymptotics for a Generalized Wave Equation with Degenerating Velocity and Their Applications in the Linear Long Wave Run-Up Problem JO - Matematičeskie zametki PY - 2018 SP - 483 EP - 504 VL - 104 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2018_104_4_a0/ LA - ru ID - MZM_2018_104_4_a0 ER -
%0 Journal Article %A A. Yu. Anikin %A S. Yu. Dobrokhotov %A V. E. Nazaikinskii %T Simple Asymptotics for a Generalized Wave Equation with Degenerating Velocity and Their Applications in the Linear Long Wave Run-Up Problem %J Matematičeskie zametki %D 2018 %P 483-504 %V 104 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2018_104_4_a0/ %G ru %F MZM_2018_104_4_a0
A. Yu. Anikin; S. Yu. Dobrokhotov; V. E. Nazaikinskii. Simple Asymptotics for a Generalized Wave Equation with Degenerating Velocity and Their Applications in the Linear Long Wave Run-Up Problem. Matematičeskie zametki, Tome 104 (2018) no. 4, pp. 483-504. http://geodesic.mathdoc.fr/item/MZM_2018_104_4_a0/
[1] J. J. Stoker, Water Waves: The Mathematical Theory with Applications, John Wiley and Sons, New York, 1958 | MR
[2] E. N. Pelinovskii, Gidrodinamika voln tsunami, IPF RAN, Nizhnii Novgorod, 1996
[3] S. Yu. Dobrokhotov, B. Tirozzi, A. A. Tolchennikov, “Asymptotics of shallow water equations on the sphere”, Russ. J. Math. Phys., 21:4 (2014), 430–449 | DOI | MR
[4] V. S. Vladimirov, Uravneniya matematicheskoi fiziki, Nauka, M., 1988 | MR | Zbl
[5] M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, LGU, L., 1980 | MR
[6] O. A. Oleinik, E. V. Radkevich, “Uravneniya vtorogo poryadka s neotritsatelnoi kharakteristicheskoi formoi”, Itogi nauki. Ser. Matematika. Mat. anal. 1969, VINITI, M., 1971, 7–252 | MR | Zbl
[7] S. Yu. Dobrokhotov, V. E. Nazaikinskii, B. Tirotstsi, “Asimptoticheskie resheniya dvumernogo modelnogo volnovogo uravneniya s vyrozhdayuscheisya skorostyu i lokalizovannymi nachalnymi dannymi”, Algebra i analiz, 22:6 (2010), 67–90 | MR | Zbl
[8] S. Yu. Dobrokhotov, V. E. Nazaikinskii, B. Tirozzi, “Two-dimensional wave equation with degeneration on the curvilinear boundary of the domain and asymptotic solutions with localized initial data”, Russ. J. Math. Phys., 20:4 (2013), 389–401 | DOI | MR
[9] V. E. Nazaikinskii, “O predstavleniyakh lokalizovannykh funktsii v $\mathbb R^2$ kanonicheskim operatorom Maslova”, Matem. zametki, 96:1 (2014), 88–100 | DOI | MR | Zbl
[10] V. E. Nazaikinskii, “Kanonicheskii operator Maslova na lagranzhevykh mnogoobraziyakh v fazovom prostranstve, sootvetstvuyuschem vyrozhdayuschemusya na granitse volnovomu uravneniyu”, Matem. zametki, 96:2 (2014), 261–276 | DOI | MR | Zbl
[11] V. E. Nazaikinskii, “Geometriya fazovogo prostranstva dlya volnovogo uravneniya, vyrozhdayuschegosya na granitse oblasti”, Matem. zametki, 92:1 (2012), 153–156 | DOI | MR | Zbl
[12] T. Vukašinac, P. Zhevandrov, “Geometric asymptotics for a degenerate hyperbolic equation”, Russ. J. Math. Phys., 9:3 (2002), 371–381 | MR
[13] S. Yu. Dobrokhotov, V. E. Nazaikinskii, B. Tirozzi, “Asymptotic solution of the one-dimensional wave equation with localized initial data and with degenerating velocity: I”, Russ. J. Math. Phys., 17:4 (2010), 434–447 | DOI | MR
[14] V. P. Maslov, Teoriya vozmuschenii i asimptoticheskie metody, Izd-vo Mosk. un-ta, M., 1965
[15] V. P. Maslov, M. V. Fedoryuk, Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR | Zbl
[16] S. Yu. Dobrokhotov, B. Tirotstsi, A. I. Shafarevich, “Predstavleniya bystroubyvayuschikh funktsii kanonicheskim operatorom Maslova”, Matem. zametki, 82:5 (2007), 792–796 | DOI | MR | Zbl
[17] S. Yu. Dobrokhotov, V. E. Nazaikinskii, “Kharakteristiki s osobennostyami i granichnye znacheniya asimptoticheskogo resheniya zadachi Koshi dlya vyrozhdayuschegosya volnovogo uravneniya”, Matem. zametki, 100:5 (2016), 710–731 | DOI | MR
[18] S. Yu. Dobrokhotov, A. I. Shafarevich, B. Tirozzi, “Localized wave and vortical solutions of linear hyperbolic systems and their application to the linear shallow water equations”, Russ. J. Math. Phys, 15:2 (2008), 192–221 | DOI | MR
[19] S. Yu. Dobrokhotov, B. Tirozzi, C. A. Vargas, “Behavior near the focal points of asymptotic solutions to the Cauchy problem for the linearized shallow water equations with initial localized perturbations”, Russ. J. Math. Phys., 16:2 (2009), 228–245 | DOI | MR
[20] L. N. Sretenskii, Teoriya volnovykh dvizhenii zhidkosti, Nauka, M., 1977
[21] S. F. Dotsenko, B. Yu. Sergievskii, L. V. Cherkasov, “Prostranstvennye volny tsunami, vyzvannye znakoperemennym smescheniem poverkhnosti okeana”, Issledovaniya tsunami, 1986, no. 1, 7–14
[22] S. Wang, B. Le Mehaute, Chia-Chi Lu, “Effect of dispersion on impulsive waves”, Marine Geophysical Researches, 9:1 (1987), 95–111 | DOI
[23] S. Ya. Sekerzh-Zenkovich, “Simple asymptotic solution of the Cauchy–Poisson problem for head waves”, Russ. J. Math. Phys., 16:2 (2009), 315–322 | DOI | MR
[24] M. V. Karasev, V. P. Maslov, Nelineinye skobki Puassona. Geometriya i kvantovanie, Nauka, M., 1991 | MR
[25] J. B. Keller, H. B. Keller, Water Wave Run-Up on a Beach, ONR Research Report Contract No. NONR-3828(00), Washington, DC, 1964
[26] G. F. Carrier, H. P. Greenspan, “Water waves of finite amplitude on a sloping beach”, J. Fluid Mech., 4:1 (1958), 97–109 | DOI | MR
[27] C. E. Synolakis, “On the roots of $f(z)=J_0(z)-iJ_1(z)$”, Quart. Appl. Math., 46:1 (1988), 105–107 | DOI | MR
[28] S. Yu. Dobrokhotov, G. N. Makrakis, V. E. Nazaikinskii, T. Ya. Tudorovskii, “Novye formuly dlya kanonicheskogo operatora Maslova v okrestnosti fokalnykh tochek i kaustik v dvumernykh kvaziklassicheskikh asimptotikakh”, TMF, 177:3 (2013), 355–386 | DOI | MR | Zbl
[29] I. S. Gradshtein, I. M. Ryzhik, Tablitsy integralov, summ, ryadov i proizvedenii, GIFML, M., 1963 | MR
[30] S. Yu. Dobrokhotov, V. E. Nazaikinskii, “Ob asimptotike integrala tipa Besselya, imeyuschego prilozheniya v teorii nabega voln na bereg”, Matem. zametki, 102:6 (2017), 828–835 | DOI