Simple Asymptotics for a Generalized Wave Equation with Degenerating Velocity and Their Applications in the Linear Long Wave Run-Up Problem
Matematičeskie zametki, Tome 104 (2018) no. 4, pp. 483-504.

Voir la notice de l'article provenant de la source Math-Net.Ru

Asymptotic solutions of the wave equation degenerating on the boundary of the domain (where the wave propagation velocity vanishes as the square root of the distance from the boundary) can be represented with the use of a modified canonical operator on a Lagrangian submanifold, invariant with respect to the Hamiltonian vector field, of the nonstandard phase space constructed by the authors in earlier papers. The present paper provides simple expressions in a neighborhood of the boundary for functions represented by such a canonical operator and, in particular, for the solution of the Cauchy problem for the degenerate wave equation with initial data localized in a neighborhood of an interior point of the domain.
Keywords: wave equation, nonstandard characteristics, run-up on a sloping beach, localized source, near-boundary asymptotics.
@article{MZM_2018_104_4_a0,
     author = {A. Yu. Anikin and S. Yu. Dobrokhotov and V. E. Nazaikinskii},
     title = {Simple {Asymptotics} for a {Generalized} {Wave} {Equation} with {Degenerating} {Velocity} and {Their} {Applications} in the {Linear} {Long} {Wave} {Run-Up} {Problem}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {483--504},
     publisher = {mathdoc},
     volume = {104},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_104_4_a0/}
}
TY  - JOUR
AU  - A. Yu. Anikin
AU  - S. Yu. Dobrokhotov
AU  - V. E. Nazaikinskii
TI  - Simple Asymptotics for a Generalized Wave Equation with Degenerating Velocity and Their Applications in the Linear Long Wave Run-Up Problem
JO  - Matematičeskie zametki
PY  - 2018
SP  - 483
EP  - 504
VL  - 104
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_104_4_a0/
LA  - ru
ID  - MZM_2018_104_4_a0
ER  - 
%0 Journal Article
%A A. Yu. Anikin
%A S. Yu. Dobrokhotov
%A V. E. Nazaikinskii
%T Simple Asymptotics for a Generalized Wave Equation with Degenerating Velocity and Their Applications in the Linear Long Wave Run-Up Problem
%J Matematičeskie zametki
%D 2018
%P 483-504
%V 104
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_104_4_a0/
%G ru
%F MZM_2018_104_4_a0
A. Yu. Anikin; S. Yu. Dobrokhotov; V. E. Nazaikinskii. Simple Asymptotics for a Generalized Wave Equation with Degenerating Velocity and Their Applications in the Linear Long Wave Run-Up Problem. Matematičeskie zametki, Tome 104 (2018) no. 4, pp. 483-504. http://geodesic.mathdoc.fr/item/MZM_2018_104_4_a0/

[1] J. J. Stoker, Water Waves: The Mathematical Theory with Applications, John Wiley and Sons, New York, 1958 | MR

[2] E. N. Pelinovskii, Gidrodinamika voln tsunami, IPF RAN, Nizhnii Novgorod, 1996

[3] S. Yu. Dobrokhotov, B. Tirozzi, A. A. Tolchennikov, “Asymptotics of shallow water equations on the sphere”, Russ. J. Math. Phys., 21:4 (2014), 430–449 | DOI | MR

[4] V. S. Vladimirov, Uravneniya matematicheskoi fiziki, Nauka, M., 1988 | MR | Zbl

[5] M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, LGU, L., 1980 | MR

[6] O. A. Oleinik, E. V. Radkevich, “Uravneniya vtorogo poryadka s neotritsatelnoi kharakteristicheskoi formoi”, Itogi nauki. Ser. Matematika. Mat. anal. 1969, VINITI, M., 1971, 7–252 | MR | Zbl

[7] S. Yu. Dobrokhotov, V. E. Nazaikinskii, B. Tirotstsi, “Asimptoticheskie resheniya dvumernogo modelnogo volnovogo uravneniya s vyrozhdayuscheisya skorostyu i lokalizovannymi nachalnymi dannymi”, Algebra i analiz, 22:6 (2010), 67–90 | MR | Zbl

[8] S. Yu. Dobrokhotov, V. E. Nazaikinskii, B. Tirozzi, “Two-dimensional wave equation with degeneration on the curvilinear boundary of the domain and asymptotic solutions with localized initial data”, Russ. J. Math. Phys., 20:4 (2013), 389–401 | DOI | MR

[9] V. E. Nazaikinskii, “O predstavleniyakh lokalizovannykh funktsii v $\mathbb R^2$ kanonicheskim operatorom Maslova”, Matem. zametki, 96:1 (2014), 88–100 | DOI | MR | Zbl

[10] V. E. Nazaikinskii, “Kanonicheskii operator Maslova na lagranzhevykh mnogoobraziyakh v fazovom prostranstve, sootvetstvuyuschem vyrozhdayuschemusya na granitse volnovomu uravneniyu”, Matem. zametki, 96:2 (2014), 261–276 | DOI | MR | Zbl

[11] V. E. Nazaikinskii, “Geometriya fazovogo prostranstva dlya volnovogo uravneniya, vyrozhdayuschegosya na granitse oblasti”, Matem. zametki, 92:1 (2012), 153–156 | DOI | MR | Zbl

[12] T. Vukašinac, P. Zhevandrov, “Geometric asymptotics for a degenerate hyperbolic equation”, Russ. J. Math. Phys., 9:3 (2002), 371–381 | MR

[13] S. Yu. Dobrokhotov, V. E. Nazaikinskii, B. Tirozzi, “Asymptotic solution of the one-dimensional wave equation with localized initial data and with degenerating velocity: I”, Russ. J. Math. Phys., 17:4 (2010), 434–447 | DOI | MR

[14] V. P. Maslov, Teoriya vozmuschenii i asimptoticheskie metody, Izd-vo Mosk. un-ta, M., 1965

[15] V. P. Maslov, M. V. Fedoryuk, Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR | Zbl

[16] S. Yu. Dobrokhotov, B. Tirotstsi, A. I. Shafarevich, “Predstavleniya bystroubyvayuschikh funktsii kanonicheskim operatorom Maslova”, Matem. zametki, 82:5 (2007), 792–796 | DOI | MR | Zbl

[17] S. Yu. Dobrokhotov, V. E. Nazaikinskii, “Kharakteristiki s osobennostyami i granichnye znacheniya asimptoticheskogo resheniya zadachi Koshi dlya vyrozhdayuschegosya volnovogo uravneniya”, Matem. zametki, 100:5 (2016), 710–731 | DOI | MR

[18] S. Yu. Dobrokhotov, A. I. Shafarevich, B. Tirozzi, “Localized wave and vortical solutions of linear hyperbolic systems and their application to the linear shallow water equations”, Russ. J. Math. Phys, 15:2 (2008), 192–221 | DOI | MR

[19] S. Yu. Dobrokhotov, B. Tirozzi, C. A. Vargas, “Behavior near the focal points of asymptotic solutions to the Cauchy problem for the linearized shallow water equations with initial localized perturbations”, Russ. J. Math. Phys., 16:2 (2009), 228–245 | DOI | MR

[20] L. N. Sretenskii, Teoriya volnovykh dvizhenii zhidkosti, Nauka, M., 1977

[21] S. F. Dotsenko, B. Yu. Sergievskii, L. V. Cherkasov, “Prostranstvennye volny tsunami, vyzvannye znakoperemennym smescheniem poverkhnosti okeana”, Issledovaniya tsunami, 1986, no. 1, 7–14

[22] S. Wang, B. Le Mehaute, Chia-Chi Lu, “Effect of dispersion on impulsive waves”, Marine Geophysical Researches, 9:1 (1987), 95–111 | DOI

[23] S. Ya. Sekerzh-Zenkovich, “Simple asymptotic solution of the Cauchy–Poisson problem for head waves”, Russ. J. Math. Phys., 16:2 (2009), 315–322 | DOI | MR

[24] M. V. Karasev, V. P. Maslov, Nelineinye skobki Puassona. Geometriya i kvantovanie, Nauka, M., 1991 | MR

[25] J. B. Keller, H. B. Keller, Water Wave Run-Up on a Beach, ONR Research Report Contract No. NONR-3828(00), Washington, DC, 1964

[26] G. F. Carrier, H. P. Greenspan, “Water waves of finite amplitude on a sloping beach”, J. Fluid Mech., 4:1 (1958), 97–109 | DOI | MR

[27] C. E. Synolakis, “On the roots of $f(z)=J_0(z)-iJ_1(z)$”, Quart. Appl. Math., 46:1 (1988), 105–107 | DOI | MR

[28] S. Yu. Dobrokhotov, G. N. Makrakis, V. E. Nazaikinskii, T. Ya. Tudorovskii, “Novye formuly dlya kanonicheskogo operatora Maslova v okrestnosti fokalnykh tochek i kaustik v dvumernykh kvaziklassicheskikh asimptotikakh”, TMF, 177:3 (2013), 355–386 | DOI | MR | Zbl

[29] I. S. Gradshtein, I. M. Ryzhik, Tablitsy integralov, summ, ryadov i proizvedenii, GIFML, M., 1963 | MR

[30] S. Yu. Dobrokhotov, V. E. Nazaikinskii, “Ob asimptotike integrala tipa Besselya, imeyuschego prilozheniya v teorii nabega voln na bereg”, Matem. zametki, 102:6 (2017), 828–835 | DOI