On Grand and Small Bergman Spaces
Matematičeskie zametki, Tome 104 (2018) no. 3, pp. 439-446
Voir la notice de l'article provenant de la source Math-Net.Ru
Grand and small Bergman spaces of functions holomorphic in the unit disc are introduced. The boundedness of the Bergman projection operator on grand Bergman spaces is proved. The main result consists of estimates for functions in grand and small Bergman spaces near the boundary, which differ from those in the case of the classical Bergman space by a logarithmic multiplier with positive (for grand spaces) or negative (for small spaces) exponent.
Keywords:
Bergman space, Bergman projection, grand Bergman space, small Bergman space, boundary estimates.
Mots-clés : grand Lebesgue space, small Lebesgue space
Mots-clés : grand Lebesgue space, small Lebesgue space
@article{MZM_2018_104_3_a8,
author = {A. N. Karapetyants and S. G. Samko},
title = {On {Grand} and {Small} {Bergman} {Spaces}},
journal = {Matemati\v{c}eskie zametki},
pages = {439--446},
publisher = {mathdoc},
volume = {104},
number = {3},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2018_104_3_a8/}
}
A. N. Karapetyants; S. G. Samko. On Grand and Small Bergman Spaces. Matematičeskie zametki, Tome 104 (2018) no. 3, pp. 439-446. http://geodesic.mathdoc.fr/item/MZM_2018_104_3_a8/