Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2018_104_3_a8, author = {A. N. Karapetyants and S. G. Samko}, title = {On {Grand} and {Small} {Bergman} {Spaces}}, journal = {Matemati\v{c}eskie zametki}, pages = {439--446}, publisher = {mathdoc}, volume = {104}, number = {3}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2018_104_3_a8/} }
A. N. Karapetyants; S. G. Samko. On Grand and Small Bergman Spaces. Matematičeskie zametki, Tome 104 (2018) no. 3, pp. 439-446. http://geodesic.mathdoc.fr/item/MZM_2018_104_3_a8/
[1] S. Bergman, The Kernel Function and Conformal Mapping, American Math. Soc., Providence, RI, 1970 | MR | Zbl
[2] A. E. Djrbashian, F. A. Shamoian, Topics in the Theory of $A^p_\alpha$ Spaces, Teubner-Texte Math., 105, BSB B. G. Teubner Verlagsgesellschaft, Leipzig, 1988 | MR | Zbl
[3] N. L. Vasilevski, Commutative Algebras of Toeplitz Operators on the Bergman Space, Oper. Theory Adv. Appl., 185, Birkhäuser Verlag, Basel, 2008 | MR | Zbl
[4] H. Hedenmalm, B. Korenblum, K. Zhu, Theory of Bergman Spaces, Grad. Texts in Math., 199, Springer, New York, 2000 | MR | Zbl
[5] P. Duren, A. Schuster, Bergman Spaces, Math. Surveys Monogr., 100, Amer. Math. Soc., Providence, RI, 2004 | DOI | MR | Zbl
[6] K. Zhu, “Operator Theory in Function Spaces”, Math. Surveys Monogr., 138, Amer. Math. Soc., Providence, RI, 2007 | DOI | MR | Zbl
[7] K. Zhu, Spaces of Holomorphic Functions in the Unit Ball, Grad. Texts in Math., 226, Springer, New York, 2004 | MR
[8] T. Iwaniec, C. Sbordone, “On the integrability of the Jacobian under minimal hypotheses”, Arch. Rational Mech. Anal., 119:2 (1992), 129–143 | DOI | MR | Zbl
[9] L. Greco, T. Iwaniec, C. Sbordone, “Inverting the $p$-harmonic operator”, Manuscripta Math., 92:2 (1997), 249–258 | DOI | MR | Zbl
[10] G. Di Fratta, A. Fiorenza, “A direct approach to the duality of grand and small Lebesgue spaces”, Nonlinear Anal., 70:7 (2009), 2582–2592 | DOI | MR | Zbl
[11] A. Fiorenza, G. E. Karadzhov, “Grand and small Lebesgue spaces and their analogs”, Z. Anal. Anwendungen, 23:4 (2004), 657–681 | DOI | MR | Zbl
[12] A. Fiorenza, “Duality and reflexivity in grand Lebesgue spaces”, Collect. Math., 51:2 (2000), 131–148 | MR | Zbl
[13] C. Capone, A. Fiorenza, “On small Lebesgue spaces”, J. Funct. Spaces Appl., 3:1 (2005), 73–89 | DOI | MR | Zbl
[14] V. Kokilashvili, A. Meskhi, H. Rafeiro, S. Samko, Integral Operators in Non-Standard Function Spaces Vol. 2. Variable Exponent Hölder Morrey–Campanato and Grand Spaces, Oper. Theory Adv. Appl., 249, Birkhäuser, Cham, 2016 | MR
[15] N. G. de Bruijn, Asymptotic Methods in Analysis, North-Holland Publ., Amsterdam, 1961 | MR
[16] R. M. Corless, G. H. Gonnet, D. E. Hare, D. J. Jeffrey, D. E. Knuth, “On the Lambert $W$ function”, Adv. Comput. Math., 5:4 (1996), 329–359 | DOI | MR | Zbl
[17] S. M. Umarkhadzhiev, “Obobschenie ponyatiya grand-prostranstva Lebega”, Izv. vuzov. Matem., 2014, no. 4, 42–51
[18] D. Kruz-Uribe, A. Fiorenza, O. M. Guzman, “Vlozheniya grand-prostranstv Lebega, malykh prostranstv Lebega, i prostranstv Lebega s peremennym pokazatelem”, Matem. zametki, 102:5 (2017), 736–748 | DOI | MR
[19] A. Karapetyants, H. Rafeiro, S. Samko, “Boundedness of the Bergman projection and some properties of Bergman type spaces”, Complex Anal. Oper. Theory, 2018 | DOI