On the Fredholm Property of a Class of Convolution-Type Operators
Matematičeskie zametki, Tome 104 (2018) no. 3, pp. 407-421.

Voir la notice de l'article provenant de la source Math-Net.Ru

The notions of the $\mathscr L$-convolution operator and the $\mathscr L$-Wiener–Hopf operator are introduced by replacing the Fourier transform in the definition of the convolution operator by a spectral transformation of the self-adjoint Sturm–Liouville operator on the axis $\mathscr L$. In the case of the zero potential, the introduced operators coincide with the convolution operator and the Wiener–Hopf integral operator, respectively. A connection between the $\mathscr L$-Wiener–Hopf operator and singular integral operators is revealed. In the case of a piecewise continuous symbol, a criterion for the Fredholm property and a formula for the index of the $\mathscr L$-Wiener–Hopf operator in terms of the symbol and the elements of the scattering matrix of the operator $\mathscr L$ are obtained.
Keywords: the operator $\mathscr L$-Wiener–Hopf, singular integral operator, Fredholm property.
@article{MZM_2018_104_3_a6,
     author = {A. G. Kamalian and I. M. Spitkovsky},
     title = {On the {Fredholm} {Property} of a {Class} of {Convolution-Type} {Operators}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {407--421},
     publisher = {mathdoc},
     volume = {104},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_104_3_a6/}
}
TY  - JOUR
AU  - A. G. Kamalian
AU  - I. M. Spitkovsky
TI  - On the Fredholm Property of a Class of Convolution-Type Operators
JO  - Matematičeskie zametki
PY  - 2018
SP  - 407
EP  - 421
VL  - 104
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_104_3_a6/
LA  - ru
ID  - MZM_2018_104_3_a6
ER  - 
%0 Journal Article
%A A. G. Kamalian
%A I. M. Spitkovsky
%T On the Fredholm Property of a Class of Convolution-Type Operators
%J Matematičeskie zametki
%D 2018
%P 407-421
%V 104
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_104_3_a6/
%G ru
%F MZM_2018_104_3_a6
A. G. Kamalian; I. M. Spitkovsky. On the Fredholm Property of a Class of Convolution-Type Operators. Matematičeskie zametki, Tome 104 (2018) no. 3, pp. 407-421. http://geodesic.mathdoc.fr/item/MZM_2018_104_3_a6/

[1] L. D. Faddeev, “Obratnaya zadacha kvantovoi teorii rasseyaniya. II”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat., 3, VINITI, M., 1974, 93–180 | MR | Zbl

[2] V. A. Marchenko, Operatory Shturma–Liuvillya i ikh prilozheniya, Naukova dumka, Kiev, 1977 | MR | Zbl

[3] V. A. Yurko, Vvedenie v teoriyu obratnykh spektralnykh zadach, Fizmatlit, M., 2007

[4] I. G. Khachatryan, “Ob obratnoi zadache rasseyaniya dlya differentsialnykh operatorov vysshikh poryadkov na vsei osi”, Izv. AN Arm. SSR. Ser. matem., 18:5 (1983), 394–402 | MR | Zbl

[5] A. G. Kamalyan, I. G. Khachatryan, A. B. Nersesyan, “Razreshimost integralnykh uravnenii s operatorami tipa $\mathscr L$-svertki”, Izv. NAN Armenii, 29:6 (1994), 31–81 | MR | Zbl

[6] I. Gohberg, N. Krupnik, One-Dimensional Linear Singular Integral Equations. I. Introduction, Oper. Theory Adv. Appl., 53, Birkhäuser Verlag, Basel, 1992 | MR | Zbl

[7] F. D. Gakhov, Yu. I. Cherskii, Uravneniya tipa svertki, Nauka, M., 1978 | MR | Zbl

[8] R. V. Duduchava, Integralnye uravneniya svertki s razryvnymi predsimvolami, singulyarnye integralnye uravneniya s nepodvizhnymi osobennostyami i ikh prilozheniya k zadacham mekhaniki, Metsniereba, Tbilisi, 1973

[9] I. B. Simonenko, “Nekotorye obschie voprosy teorii kraevoi zadachi Rimana”, Izv. AN SSSR. Ser. matem., 32:5 (1968), 1138–1146 | MR | Zbl

[10] I. Ts. Gokhberg, N. Ya. Krupnik, “Ob algebrakh singulyarnykh operatorov so sdvigom”, Matem. issledovaniya, 8:2 (1973), 170–175 | MR | Zbl

[11] H. Bart, I. Gohberg, M. A. Kaashoek, “The coupling method for solving integral equations”, Topics in Operator Theory Systems and Networks, Oper. Theory Adv. Appl., 12, Birkhäuser Verlag, Basel, 1984, 39–73 | MR

[12] A. G. Kamalyan, A. B. Nersesyan, “Integralnye operatory tipa plavnogo perekhoda”, Funkts. analiz i ego pril., 23:2 (1989), 32–39 | MR | Zbl

[13] G. S. Litvinchuk, I. M. Spitkovskii, Factorization of Measurable Matrix Functions, Oper. Theory Adv. Appl., 25, Birkhäuser Verlag, Basel, 1987 | DOI | MR | Zbl

[14] A. G. Kamalyan, V. V. Simonyan, “O razreshimosti odnogo tipa odnomernykh psevdodifferentsialnykh operatorov”, Izv. NAN Armenii, 43:4 (2007), 55–71

[15] S. G. Mikhlin, S. Prössdorf, Singular Integral Operators, Springer-Verlag, Berlin, 1986 | MR | Zbl

[16] I. Ts. Gokhberg, N. Ya. Krupnik, “Singulyarnye integralnye operatory s kusochno-nepreryvnymi koeffitsientami i ikh simvoly”, Izv. AN SSSR. Ser. matem., 35:4 (1971), 940–964 | MR | Zbl

[17] I. Gohberg, N. Krupnik, I. Spitkovsky, “Banach algebras of singular integral operators with piecewise continuous coefficients. General contour and weight”, Integral Equations Operator Theory, 17:3 (1993), 322–337 | DOI | MR | Zbl

[18] N. K. Karapetyants, S. G. Samko, “Singulyarnye integralnye operatory so sdvigom Karlemana v sluchae kusochno-nepreryvnykh koeffitsientov, I”, Izv. vuzov. Matem., 1975, no. 2, 43–54 | MR | Zbl