Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2018_104_3_a5, author = {I. M. Erusalimskyi}, title = {2--3 {Paths} in a {Lattice} {Graph:} {Random} {Walks}}, journal = {Matemati\v{c}eskie zametki}, pages = {396--406}, publisher = {mathdoc}, volume = {104}, number = {3}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2018_104_3_a5/} }
I. M. Erusalimskyi. 2--3 Paths in a Lattice Graph: Random Walks. Matematičeskie zametki, Tome 104 (2018) no. 3, pp. 396-406. http://geodesic.mathdoc.fr/item/MZM_2018_104_3_a5/
[1] J .G. Kemeny, J. L. Snell, Finite Markov Chains, D. Van Nostrand, Princeton, NJ, 1960 | MR | Zbl
[2] L. R. Ford, D. R. Fulkerson, Flows in Networks, Princeton Univ. Press, Princeton, NJ, 1962 | MR | Zbl
[3] V. S. Rabinovich, S. Roch, “The essential spectrum of Schrödinger operators on lattice”, J. Phys. A, 39:26 (2006), 8377–8394 | DOI | MR | Zbl
[4] V. S. Rabinovich, S. Roch, “Essential spectra of difference operators on $\mathbb Z^n$-periodic graphs”, J. Phys. A, 40:33 (2007), 10109–10128 | DOI | MR | Zbl
[5] V. Rabinovich, S. Roch, “Pseudodifferential operators on periodic graphs”, Integral Equations Operator Theory, 72:2 (2012), 197–217 | DOI | MR | Zbl
[6] V. Rabinovich, “Diffraction by periodic graphs”, Complex Var. Elliptic Equ., 59:4 (2014), 578–598 | DOI | MR | Zbl
[7] V. Rabinovich, “On Boundary Integral Operators for Diffraction Problems on Graphs with Finitely Many Exits at Infinity”, Russ. J. Math. Phys., 20:4 (2013), 508–522 | DOI | MR | Zbl
[8] V. S. Rabinovich, “Akusticheskaya difraktsiya na periodicheskikh grafakh”, Funkts. analiz i ego pril., 48:4 (2014), 77–83 | DOI | MR | Zbl
[9] V. A. Malyshev, Sluchainye bluzhdaniya. Uravneniya Vinera–Khopfa. Avtomorfizmy Galua, Izd-vo Mosk. un-ta, M., 1970 | MR
[10] V. A. Malyshev, “O reshenii uravnenii Vinera–Khopfa v chetverti ploskosti”, Dokl. AN SSSR, 187 (1969), 1243–1246 | MR | Zbl
[11] A. E. Pasenchuk, “Ob odnoi zadache sluchainogo bluzhdaniya v chetverti ploskosti”, UMN, 33:6 (204) (1978), 229–230 | MR | Zbl
[12] L. Yu. Zhilyakova, O. P. Kuznetsov, Teoriya resursnykh setei, Izdatelskii Tsentr RIOR, M., 2017 | DOI
[13] L. Yu. Zhilyakova, “Ergodicheskie tsiklicheskie resursnye seti. I. Kolebaniya i ravnovesnye sostoyaniya pri malykh resursakh”, UBS, 43 (2013), 34–54
[14] L. Yu. Zhilyakova, “Ergodicheskie tsiklicheskie resursnye seti. II. Bolshie resursy”, UBS, 45 (2013), 6–29
[15] O. P. Kuznetsov, L. Yu. Zhilyakova, “Nonsymmetric resource networks. The study of limit states”, Management and Production Engineering Review, 2:3 (2011), 33–39
[16] L. Yu. Zhilyakova, “Grafovye dinamicheskie modeli i ikh svoistva”, Avtomat. i telemekh., 2015, no. 8, 115–139 | Zbl
[17] Ya. M. Erusalimskii, V. A. Skorokhodov, “Grafy s ventilnoi dostizhimostyu. Markovskie protsessy i potoki v setyakh”, Izv. vuzov. Sev.-Kavkaz. reg. Estestv. nauki, 2003, no. 2, 3–5
[18] Ya. M. Erusalimskii, V. A. Skorokhodov, M. V. Kuzminova, A. G. Petrosyan, Grafy s nestandartnoi dostizhimostyu: zadachi, prilozheniya, YuFU, Rostov-na-Donu, 2009
[19] Ya. M. Erusalimskii, N. N. Vodolazov, “Nestatsionarnyi i sluchainyi potok v seti”, Sovremennye metody teorii kraevykh zadach: materialy Voronezhskoi vesennei matematicheskoi shkoly «Pontryaginskie chteniya – KhKh», VGU, Voronezh, 2009, 56–57
[20] Ya. M. Erusalimskii, A. G. Petrosyan, “Sluchainye protsessy v setyakh s bipolyarnoi magnitnostyu”, Izv. vuzov. Sev.-Kavkaz. reg. Estestv. nauki, 2005, no. 11, 10–16
[21] Ya. M. Erusalimskii, “Sluchainye bluzhdaniya po grafu-reshetke i kombinatornye tozhdestva”, Inzhenernyi vestnik Dona, 2:2 (2015) http://www.ivdon.ru/ru/magazine/archive/n2p2y2015/2964
[22] I. M. Erusalimskiy, “Graph-lattice: random walk and combinatorial identities”, Bol. Soc. Mat. Mex. (3), 22:2 (2016), 329–225 | DOI | MR