2--3 Paths in a Lattice Graph: Random Walks
Matematičeskie zametki, Tome 104 (2018) no. 3, pp. 396-406.

Voir la notice de l'article provenant de la source Math-Net.Ru

A lattice graph with 2–3 reachability constraints is considered. The graph's vertices are the points with integer nonnegative coordinates in the plane. Each vertex has two outgoing edges, one entering its immediate right neighbor and the other entering its immediate upper neighbor. The admissible paths for 2–3 reachability are those in which the numbers of edges in all but the last inclusion-maximal straight-line segments are divisible by $2$ for horizontal segments and by $3$ for vertical segments. A formula for the number of 2–3 paths from a vertex to a vertex is obtained. A random walk process on the 2–3 paths in the lattice graph is considered. It is proved that this process can locally be reduced to a Markov process on subgraphs determined by the type of the initial vertex. Formulas for the probabilities of vertex-to-vertex transitions along 2–3 paths are obtained.
Keywords: digraph, lattice graph, random walk, transition probability, vertex reachability.
@article{MZM_2018_104_3_a5,
     author = {I. M. Erusalimskyi},
     title = {2--3 {Paths} in a {Lattice} {Graph:} {Random} {Walks}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {396--406},
     publisher = {mathdoc},
     volume = {104},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_104_3_a5/}
}
TY  - JOUR
AU  - I. M. Erusalimskyi
TI  - 2--3 Paths in a Lattice Graph: Random Walks
JO  - Matematičeskie zametki
PY  - 2018
SP  - 396
EP  - 406
VL  - 104
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_104_3_a5/
LA  - ru
ID  - MZM_2018_104_3_a5
ER  - 
%0 Journal Article
%A I. M. Erusalimskyi
%T 2--3 Paths in a Lattice Graph: Random Walks
%J Matematičeskie zametki
%D 2018
%P 396-406
%V 104
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_104_3_a5/
%G ru
%F MZM_2018_104_3_a5
I. M. Erusalimskyi. 2--3 Paths in a Lattice Graph: Random Walks. Matematičeskie zametki, Tome 104 (2018) no. 3, pp. 396-406. http://geodesic.mathdoc.fr/item/MZM_2018_104_3_a5/

[1] J .G. Kemeny, J. L. Snell, Finite Markov Chains, D. Van Nostrand, Princeton, NJ, 1960 | MR | Zbl

[2] L. R. Ford, D. R. Fulkerson, Flows in Networks, Princeton Univ. Press, Princeton, NJ, 1962 | MR | Zbl

[3] V. S. Rabinovich, S. Roch, “The essential spectrum of Schrödinger operators on lattice”, J. Phys. A, 39:26 (2006), 8377–8394 | DOI | MR | Zbl

[4] V. S. Rabinovich, S. Roch, “Essential spectra of difference operators on $\mathbb Z^n$-periodic graphs”, J. Phys. A, 40:33 (2007), 10109–10128 | DOI | MR | Zbl

[5] V. Rabinovich, S. Roch, “Pseudodifferential operators on periodic graphs”, Integral Equations Operator Theory, 72:2 (2012), 197–217 | DOI | MR | Zbl

[6] V. Rabinovich, “Diffraction by periodic graphs”, Complex Var. Elliptic Equ., 59:4 (2014), 578–598 | DOI | MR | Zbl

[7] V. Rabinovich, “On Boundary Integral Operators for Diffraction Problems on Graphs with Finitely Many Exits at Infinity”, Russ. J. Math. Phys., 20:4 (2013), 508–522 | DOI | MR | Zbl

[8] V. S. Rabinovich, “Akusticheskaya difraktsiya na periodicheskikh grafakh”, Funkts. analiz i ego pril., 48:4 (2014), 77–83 | DOI | MR | Zbl

[9] V. A. Malyshev, Sluchainye bluzhdaniya. Uravneniya Vinera–Khopfa. Avtomorfizmy Galua, Izd-vo Mosk. un-ta, M., 1970 | MR

[10] V. A. Malyshev, “O reshenii uravnenii Vinera–Khopfa v chetverti ploskosti”, Dokl. AN SSSR, 187 (1969), 1243–1246 | MR | Zbl

[11] A. E. Pasenchuk, “Ob odnoi zadache sluchainogo bluzhdaniya v chetverti ploskosti”, UMN, 33:6 (204) (1978), 229–230 | MR | Zbl

[12] L. Yu. Zhilyakova, O. P. Kuznetsov, Teoriya resursnykh setei, Izdatelskii Tsentr RIOR, M., 2017 | DOI

[13] L. Yu. Zhilyakova, “Ergodicheskie tsiklicheskie resursnye seti. I. Kolebaniya i ravnovesnye sostoyaniya pri malykh resursakh”, UBS, 43 (2013), 34–54

[14] L. Yu. Zhilyakova, “Ergodicheskie tsiklicheskie resursnye seti. II. Bolshie resursy”, UBS, 45 (2013), 6–29

[15] O. P. Kuznetsov, L. Yu. Zhilyakova, “Nonsymmetric resource networks. The study of limit states”, Management and Production Engineering Review, 2:3 (2011), 33–39

[16] L. Yu. Zhilyakova, “Grafovye dinamicheskie modeli i ikh svoistva”, Avtomat. i telemekh., 2015, no. 8, 115–139 | Zbl

[17] Ya. M. Erusalimskii, V. A. Skorokhodov, “Grafy s ventilnoi dostizhimostyu. Markovskie protsessy i potoki v setyakh”, Izv. vuzov. Sev.-Kavkaz. reg. Estestv. nauki, 2003, no. 2, 3–5

[18] Ya. M. Erusalimskii, V. A. Skorokhodov, M. V. Kuzminova, A. G. Petrosyan, Grafy s nestandartnoi dostizhimostyu: zadachi, prilozheniya, YuFU, Rostov-na-Donu, 2009

[19] Ya. M. Erusalimskii, N. N. Vodolazov, “Nestatsionarnyi i sluchainyi potok v seti”, Sovremennye metody teorii kraevykh zadach: materialy Voronezhskoi vesennei matematicheskoi shkoly «Pontryaginskie chteniya – KhKh», VGU, Voronezh, 2009, 56–57

[20] Ya. M. Erusalimskii, A. G. Petrosyan, “Sluchainye protsessy v setyakh s bipolyarnoi magnitnostyu”, Izv. vuzov. Sev.-Kavkaz. reg. Estestv. nauki, 2005, no. 11, 10–16

[21] Ya. M. Erusalimskii, “Sluchainye bluzhdaniya po grafu-reshetke i kombinatornye tozhdestva”, Inzhenernyi vestnik Dona, 2:2 (2015) http://www.ivdon.ru/ru/magazine/archive/n2p2y2015/2964

[22] I. M. Erusalimskiy, “Graph-lattice: random walk and combinatorial identities”, Bol. Soc. Mat. Mex. (3), 22:2 (2016), 329–225 | DOI | MR