Bernstein's Inequality for the Weyl Derivatives of Trigonometric Polynomials in the Space~$L_0$
Matematičeskie zametki, Tome 104 (2018) no. 2, pp. 255-264.

Voir la notice de l'article provenant de la source Math-Net.Ru

A logarithmic asymptotics for the behavior with respect to $n$ of the exact constant in Bernstein's inequality for the Weyl derivative of positive noninteger order of trigonometric polynomials of order $n$ in the space $L_0$ is obtained. It turns out that the order in $n$ of the behavior of this constant for positive noninteger orders of the derivatives has exponential growth in contrast to the power growth in the well-studied case of classical derivatives of positive integer order.
Keywords: trigonometric polynomial, Weyl derivative, Bernstein's inequality, the space $L_0$.
@article{MZM_2018_104_2_a8,
     author = {A. O. Leont'eva},
     title = {Bernstein's {Inequality} for the {Weyl} {Derivatives} of {Trigonometric} {Polynomials} in the {Space~}$L_0$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {255--264},
     publisher = {mathdoc},
     volume = {104},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_104_2_a8/}
}
TY  - JOUR
AU  - A. O. Leont'eva
TI  - Bernstein's Inequality for the Weyl Derivatives of Trigonometric Polynomials in the Space~$L_0$
JO  - Matematičeskie zametki
PY  - 2018
SP  - 255
EP  - 264
VL  - 104
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_104_2_a8/
LA  - ru
ID  - MZM_2018_104_2_a8
ER  - 
%0 Journal Article
%A A. O. Leont'eva
%T Bernstein's Inequality for the Weyl Derivatives of Trigonometric Polynomials in the Space~$L_0$
%J Matematičeskie zametki
%D 2018
%P 255-264
%V 104
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_104_2_a8/
%G ru
%F MZM_2018_104_2_a8
A. O. Leont'eva. Bernstein's Inequality for the Weyl Derivatives of Trigonometric Polynomials in the Space~$L_0$. Matematičeskie zametki, Tome 104 (2018) no. 2, pp. 255-264. http://geodesic.mathdoc.fr/item/MZM_2018_104_2_a8/

[1] S. G. Samko, A. A. Kilbas, O. I. Marichev, Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987 | MR | Zbl

[2] A. I. Kozko, “The exact constants in the Bernstein–Zygmund–Szegö inequalities with fractional derivatives and the Jackson–Nikolskii inequality for trigonometric polynomials”, East J. Approx., 4:3 (1998), 391–416 | MR | Zbl

[3] V. V. Arestov, “Sharp integral inequalities for trigonometric polynomials”, Constructive Theory of Functions, Prof. M. Drinov Acad. Publ. House, Sofia, 2012, 30–45 | MR

[4] V. V. Arestov, P. Yu. Glazyrina, “Sharp integral inequalities for fractional derivatives of trigonometric polynomials”, J. Approx. Theory, 164:11 (2012), 1501–1512 | DOI | MR | Zbl

[5] V. V. Arestov, P. Yu. Glazyrina, “Neravenstvo Bernshteina–Sege dlya drobnykh proizvodnykh trigonometricheskikh polinomov”, Tr. IMM UrO RAN, 20, no. 1, 2014, 17–31 | MR

[6] S. Bernstein, “Sur l'ordre de la meilleure approximation des fonctions continues par des polynômes de degré donné”, Mémoires de l'Académie Royale de Belgique, 2:4 (1912), 1–103 | Zbl

[7] S. Bernstein, Leçons sur les propriétés extrémales et la meilleure approximation des fonctions analytiques d'une variable réelle, Gauthier-Villar, Paris, 1926 | Zbl

[8] S. N. Bernshtein, “O nailuchshem priblizhenii nepreryvnykh funktsii posredstvom mnogochlenov dannoi stepeni”, Sobranie sochinenii: v 4 t., T. 1, Izd.-vo AN SSSR, M., 1952, 11–104

[9] S. N. Bernshtein, “Avtorskie kommentarii”, Sobranie sochinenii: v 4 t., T. 1, Izd.-vo AN SSSR, M., 1952, 526–562

[10] M. Riesz, “Formule d'interpolation pour la dérivée d'un polynome trigonométrique”, C. R. Acad. Sci., 158 (1914), 1152–1154 | Zbl

[11] M. Riesz, “Eine trigonometrische Interpolationsformel und einige Ungleichungen für Polynome”, Deutsche Math. Ver., 23 (1914), 354–368 | Zbl

[12] A. Zigmund, Trigonometricheskie ryady, T. 2, Mir, M., 1965 | MR | Zbl

[13] P. I. Lizorkin, “Otsenki trigonometricheskikh integralov i neravenstvo Bernshteina dlya drobnykh proizvodnykh”, Izv. AN SSSR. Ser. matem., 29:1 (1965), 109–126 | MR | Zbl

[14] V. V. Arestov, “O neravenstvakh S. N. Bernshteina dlya algebraicheskikh i trigonometricheskikh polinomov”, Dokl. AN SSSR, 246:6 (1979), 1289–1292 | MR | Zbl

[15] V. V. Arestov, “Ob integralnykh neravenstvakh dlya trigonometricheskikh polinomov i ikh proizvodnykh”, Izv. AN SSSR. Ser. matem., 45:1 (1981), 3–22 | MR | Zbl

[16] T. Bang, “Une inégalite de Kolmogoroff et les fonctions presque-périodiques”, Danske Vid. Selsk. Math.-Fys. Medd., 19:4 (1941), 1–28 | MR | Zbl

[17] S. P. Geisberg, “Analogi neravenstv S. N. Bernshteina dlya drobnoi proizvodnoi”, Voprosy prikladnoi matematiki i matematicheskogo modelirovaniya, Kratkie soderzhaniya dokladov 25-i nauchnoi konferentsii (24 yanvarya – 4 fevralya 1967 g.), Leningr. inzh.-stroit. in-t, L., 1967, 5–10

[18] G. Wilmes, “On Riesz-type inequalities and $K$-functionals related to Riesz potentials in $\mathbb R^N$”, Numer. Funct. Anal. Optim., 1:1 (1979), 57–77 | DOI | MR | Zbl

[19] A. O. Leonteva, “Neravenstvo Bernshteina v $L_0$ dlya proizvodnoi nulevogo poryadka trigonometricheskikh polinomov”, Tr. IMM UrO RAN, 19, no. 2, 2013, 216–223 | MR

[20] N. V. Popov, “O neravenstve dlya drobnykh proizvodnykh”, Sovremennye metody teorii funktsii i smezhnye problemy, Materialy Mezhdunarodnoi konferentsii: Voronezhskaya zimnyaya matematicheskaya shkola (26 yanvarya – 1 fevralya 2017 g.), Izd. dom VGU, Voronezh, 2017, 168–169

[21] V. V. Arestov, “Integralnye neravenstva dlya algebraicheskikh mnogochlenov na edinichnoi okruzhnosti”, Matem. zametki, 48:4 (1990), 7–18 | MR | Zbl

[22] A. M. Ilin, A. R. Danilin, Asimptoticheskie metody v analize, Fizmatlit, M., 2009 | Zbl

[23] H. Weyl, “Bemerkungen zum Begriff des Differentialquotienten gebrochener Ordnung”, Vierteljahr. Naturforsch. Ges. Zürich, 62 (1917), 296–302 | MR | Zbl

[24] V. V. Arestov, “Neravenstvo Sege dlya proizvodnykh sopryazhennogo trigonometricheskogo polinoma v $L_0$”, Matem. zametki, 56:6 (1994), 10–26 | MR | Zbl