On the Asymptotic Behavior of Solutions to Two-Term Differential Equations with Singular Coefficients
Matematičeskie zametki, Tome 104 (2018) no. 2, pp. 231-242

Voir la notice de l'article provenant de la source Math-Net.Ru

Asymptotic formulas as $x\to \infty$ are obtained for a fundamental system of solutions to equations of the form \begin{equation*} l(y): = (-1)^n(p(x)y^{(n)})^{(n)}+q(x)y=\lambda y, \qquad x\in [1,\infty), \end{equation*} where $p$ is a locally integrable function representable as $$ p(x) = (1+r(x))^{-1},\qquad r\in L^1(1,\infty), $$ and $q$ is a distribution such that $q= \sigma^{(k)}$ for a fixed integer $k$, $0\leqslant k\leqslant n$, and a function $\sigma$ satisfying the conditions $$ \begin{aligned} \sigma \in L^1(1,\infty), \qquad \text{if}\quad k , \\ |\sigma|(1+|r|) (1+ |\sigma|) \in L^1(1,\infty), \qquad \text{if}\quad k = n. \end{aligned} $$ Similar results are obtained for functions representable as $$ p(x) = x^{2n+\nu}(1+ r(x))^{-1},\qquad q= \sigma^{(k)},\qquad \sigma(x)=x^{k+\nu} (\beta +s(x)), $$ for fixed $k$, $0\leqslant k\leqslant n$, where the functions $r$ and $s$ satisfy certain integral decay conditions. Theorems on the deficiency index of the minimal symmetric operator generated by the differential expression $l(y)$ (for real functions $p$ and $q$) and theorems on the spectra of the corresponding self-adjoint extensions are also obtained. Complete proofs are given only for the case $n=1$.
Keywords: differential operators with distribution coefficients, quasi-derivatives, asymptotics of solutions of differential equations, deficiency index of a differential operator.
@article{MZM_2018_104_2_a6,
     author = {N. N. Konechnaja and K. A. Mirzoev and A. A. Shkalikov},
     title = {On the {Asymptotic} {Behavior} of {Solutions} to {Two-Term} {Differential} {Equations} with {Singular} {Coefficients}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {231--242},
     publisher = {mathdoc},
     volume = {104},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_104_2_a6/}
}
TY  - JOUR
AU  - N. N. Konechnaja
AU  - K. A. Mirzoev
AU  - A. A. Shkalikov
TI  - On the Asymptotic Behavior of Solutions to Two-Term Differential Equations with Singular Coefficients
JO  - Matematičeskie zametki
PY  - 2018
SP  - 231
EP  - 242
VL  - 104
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_104_2_a6/
LA  - ru
ID  - MZM_2018_104_2_a6
ER  - 
%0 Journal Article
%A N. N. Konechnaja
%A K. A. Mirzoev
%A A. A. Shkalikov
%T On the Asymptotic Behavior of Solutions to Two-Term Differential Equations with Singular Coefficients
%J Matematičeskie zametki
%D 2018
%P 231-242
%V 104
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_104_2_a6/
%G ru
%F MZM_2018_104_2_a6
N. N. Konechnaja; K. A. Mirzoev; A. A. Shkalikov. On the Asymptotic Behavior of Solutions to Two-Term Differential Equations with Singular Coefficients. Matematičeskie zametki, Tome 104 (2018) no. 2, pp. 231-242. http://geodesic.mathdoc.fr/item/MZM_2018_104_2_a6/