On the Asymptotic Behavior of Solutions to Two-Term Differential Equations with Singular Coefficients
Matematičeskie zametki, Tome 104 (2018) no. 2, pp. 231-242.

Voir la notice de l'article provenant de la source Math-Net.Ru

Asymptotic formulas as $x\to \infty$ are obtained for a fundamental system of solutions to equations of the form \begin{equation*} l(y): = (-1)^n(p(x)y^{(n)})^{(n)}+q(x)y=\lambda y, \qquad x\in [1,\infty), \end{equation*} where $p$ is a locally integrable function representable as $$ p(x) = (1+r(x))^{-1},\qquad r\in L^1(1,\infty), $$ and $q$ is a distribution such that $q= \sigma^{(k)}$ for a fixed integer $k$, $0\leqslant k\leqslant n$, and a function $\sigma$ satisfying the conditions $$ \begin{aligned} \sigma \in L^1(1,\infty), \qquad \text{if}\quad k , \\ |\sigma|(1+|r|) (1+ |\sigma|) \in L^1(1,\infty), \qquad \text{if}\quad k = n. \end{aligned} $$ Similar results are obtained for functions representable as $$ p(x) = x^{2n+\nu}(1+ r(x))^{-1},\qquad q= \sigma^{(k)},\qquad \sigma(x)=x^{k+\nu} (\beta +s(x)), $$ for fixed $k$, $0\leqslant k\leqslant n$, where the functions $r$ and $s$ satisfy certain integral decay conditions. Theorems on the deficiency index of the minimal symmetric operator generated by the differential expression $l(y)$ (for real functions $p$ and $q$) and theorems on the spectra of the corresponding self-adjoint extensions are also obtained. Complete proofs are given only for the case $n=1$.
Keywords: differential operators with distribution coefficients, quasi-derivatives, asymptotics of solutions of differential equations, deficiency index of a differential operator.
@article{MZM_2018_104_2_a6,
     author = {N. N. Konechnaja and K. A. Mirzoev and A. A. Shkalikov},
     title = {On the {Asymptotic} {Behavior} of {Solutions} to {Two-Term} {Differential} {Equations} with {Singular} {Coefficients}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {231--242},
     publisher = {mathdoc},
     volume = {104},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_104_2_a6/}
}
TY  - JOUR
AU  - N. N. Konechnaja
AU  - K. A. Mirzoev
AU  - A. A. Shkalikov
TI  - On the Asymptotic Behavior of Solutions to Two-Term Differential Equations with Singular Coefficients
JO  - Matematičeskie zametki
PY  - 2018
SP  - 231
EP  - 242
VL  - 104
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_104_2_a6/
LA  - ru
ID  - MZM_2018_104_2_a6
ER  - 
%0 Journal Article
%A N. N. Konechnaja
%A K. A. Mirzoev
%A A. A. Shkalikov
%T On the Asymptotic Behavior of Solutions to Two-Term Differential Equations with Singular Coefficients
%J Matematičeskie zametki
%D 2018
%P 231-242
%V 104
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_104_2_a6/
%G ru
%F MZM_2018_104_2_a6
N. N. Konechnaja; K. A. Mirzoev; A. A. Shkalikov. On the Asymptotic Behavior of Solutions to Two-Term Differential Equations with Singular Coefficients. Matematičeskie zametki, Tome 104 (2018) no. 2, pp. 231-242. http://geodesic.mathdoc.fr/item/MZM_2018_104_2_a6/

[1] M. A. Naimark, Lineinye differentsialnye operatory, Nauka, M., 1969 | MR | Zbl

[2] F. Khartman, Obyknovennye differentsialnye uravneniya, Mir, M., 1970 | MR | Zbl

[3] S. Albeverio, F. Gesztezy, R. Hoegh-Krohn, H. Holden, Solvable Models in Quantum Mechanics, Springer-Verlag, Berlin, 1988 | MR | Zbl

[4] S. Albeverio, P. Kurasov, “Singular perturbations of differential operators”, Solvable Schrödinger Type Equations, London Math. Soc. Lecture Note Ser., 271, Cambrige Univ. press, Cambrige, 2000 | MR

[5] A. C. Kostenko, M. M. Malamud, “Ob odnomernom operatore Shredingera s $\delta$-vzaimodeistviyami”, Funkts. analiz i ego pril., 44:2 (2010), 87–91 | DOI | MR | Zbl

[6] S. Albeverio, A. Kostenko, M. Malamud, “Spectral theory of semibounded Sturm–Liouville operators with local interactions on a discrete set”, J. Math. Phys., 51:10 (2010), 102102 | DOI | MR

[7] C. A. Orlov, “Ob indekse defekta lineinykh differentsialnykh operatorov”, Dokl. AN SSSR, 92:3 (1953), 483–486 | MR | Zbl

[8] R. B. Paris, A. D. Wood, “On the $L_2$ nature of solutions of $n$th order symmetric differential equations and McLeod's conjecture”, Proc. Roy. Soc. Edinburgh Sect. A, 90:3-4 (1981), 209–236 | DOI | MR

[9] R. B. Paris, A. D. Wood, Asymptotics of High Order Differential Equations, Pitman Res. Notes Math. Ser., 129, John Wiley Sons, New York, 1986 | MR

[10] K. A. Mirzoev, “O teoreme Orlova ob indekse defekta differentsialnykh operatorov”, Dokl. AN, 380:5 (2001), 591–595 | MR | Zbl

[11] K. A. Mirzoev, I. N. Broitigam, T. A. Safonova, “Ob indekse defekta nekotorykh vektornykh differentsialnykh operatorov vtorogo poryadka”, Ufimsk. matem. zhurn., 9:1 (2017), 18–28

[12] I. N. Broitigam, K. A. Mirzoev, “Ob asimptotike reshenii matrichnykh differentsialnykh uravnenii s negladkimi koeffitsientami”, Matem. zametki, 104:1 (2018), 148–153 | DOI

[13] E. A. Koddington, N. Levinson, Teoriya obyknovennykh differentsialnykh uravnenii, IL, M., 1958 | MR | Zbl

[14] M. S. P. Eastham, The Asymptotic Solution of Linear Differential Systems. Applications of the Levinson Theorem, Clarendon Press, Oxford, 1989 | MR

[15] A. M. Savchuk, A. A. Shkalikov, “Operatory Shturma–Liuvillya s singulyarnymi potentsialami”, Matem. zametki, 66:6 (1999), 897–912 | DOI | MR | Zbl

[16] A. M. Savchuk, A. A. Shkalikov, “Operatory Shturma—Liuvillya s potentsialami-raspredeleniyami”, Tr. MMO, 64, M., 2003, 159–212 | MR | Zbl

[17] J. Eckhardt, F. Gesztesy, R. Nichols, G. Teschl, “Weyl–Titchmarsh theory for Sturm–Liouville operators with distributional potentials”, Opuscula Math., 33:3 (2013), 467–563 | DOI | MR

[18] K. A. Mirzoev, “Operatory Shturma–Liuvillya”, Tr. MMO, 75, no. 2, MTsNMO, M., 2014, 335–359