Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2018_104_2_a6, author = {N. N. Konechnaja and K. A. Mirzoev and A. A. Shkalikov}, title = {On the {Asymptotic} {Behavior} of {Solutions} to {Two-Term} {Differential} {Equations} with {Singular} {Coefficients}}, journal = {Matemati\v{c}eskie zametki}, pages = {231--242}, publisher = {mathdoc}, volume = {104}, number = {2}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2018_104_2_a6/} }
TY - JOUR AU - N. N. Konechnaja AU - K. A. Mirzoev AU - A. A. Shkalikov TI - On the Asymptotic Behavior of Solutions to Two-Term Differential Equations with Singular Coefficients JO - Matematičeskie zametki PY - 2018 SP - 231 EP - 242 VL - 104 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2018_104_2_a6/ LA - ru ID - MZM_2018_104_2_a6 ER -
%0 Journal Article %A N. N. Konechnaja %A K. A. Mirzoev %A A. A. Shkalikov %T On the Asymptotic Behavior of Solutions to Two-Term Differential Equations with Singular Coefficients %J Matematičeskie zametki %D 2018 %P 231-242 %V 104 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2018_104_2_a6/ %G ru %F MZM_2018_104_2_a6
N. N. Konechnaja; K. A. Mirzoev; A. A. Shkalikov. On the Asymptotic Behavior of Solutions to Two-Term Differential Equations with Singular Coefficients. Matematičeskie zametki, Tome 104 (2018) no. 2, pp. 231-242. http://geodesic.mathdoc.fr/item/MZM_2018_104_2_a6/
[1] M. A. Naimark, Lineinye differentsialnye operatory, Nauka, M., 1969 | MR | Zbl
[2] F. Khartman, Obyknovennye differentsialnye uravneniya, Mir, M., 1970 | MR | Zbl
[3] S. Albeverio, F. Gesztezy, R. Hoegh-Krohn, H. Holden, Solvable Models in Quantum Mechanics, Springer-Verlag, Berlin, 1988 | MR | Zbl
[4] S. Albeverio, P. Kurasov, “Singular perturbations of differential operators”, Solvable Schrödinger Type Equations, London Math. Soc. Lecture Note Ser., 271, Cambrige Univ. press, Cambrige, 2000 | MR
[5] A. C. Kostenko, M. M. Malamud, “Ob odnomernom operatore Shredingera s $\delta$-vzaimodeistviyami”, Funkts. analiz i ego pril., 44:2 (2010), 87–91 | DOI | MR | Zbl
[6] S. Albeverio, A. Kostenko, M. Malamud, “Spectral theory of semibounded Sturm–Liouville operators with local interactions on a discrete set”, J. Math. Phys., 51:10 (2010), 102102 | DOI | MR
[7] C. A. Orlov, “Ob indekse defekta lineinykh differentsialnykh operatorov”, Dokl. AN SSSR, 92:3 (1953), 483–486 | MR | Zbl
[8] R. B. Paris, A. D. Wood, “On the $L_2$ nature of solutions of $n$th order symmetric differential equations and McLeod's conjecture”, Proc. Roy. Soc. Edinburgh Sect. A, 90:3-4 (1981), 209–236 | DOI | MR
[9] R. B. Paris, A. D. Wood, Asymptotics of High Order Differential Equations, Pitman Res. Notes Math. Ser., 129, John Wiley Sons, New York, 1986 | MR
[10] K. A. Mirzoev, “O teoreme Orlova ob indekse defekta differentsialnykh operatorov”, Dokl. AN, 380:5 (2001), 591–595 | MR | Zbl
[11] K. A. Mirzoev, I. N. Broitigam, T. A. Safonova, “Ob indekse defekta nekotorykh vektornykh differentsialnykh operatorov vtorogo poryadka”, Ufimsk. matem. zhurn., 9:1 (2017), 18–28
[12] I. N. Broitigam, K. A. Mirzoev, “Ob asimptotike reshenii matrichnykh differentsialnykh uravnenii s negladkimi koeffitsientami”, Matem. zametki, 104:1 (2018), 148–153 | DOI
[13] E. A. Koddington, N. Levinson, Teoriya obyknovennykh differentsialnykh uravnenii, IL, M., 1958 | MR | Zbl
[14] M. S. P. Eastham, The Asymptotic Solution of Linear Differential Systems. Applications of the Levinson Theorem, Clarendon Press, Oxford, 1989 | MR
[15] A. M. Savchuk, A. A. Shkalikov, “Operatory Shturma–Liuvillya s singulyarnymi potentsialami”, Matem. zametki, 66:6 (1999), 897–912 | DOI | MR | Zbl
[16] A. M. Savchuk, A. A. Shkalikov, “Operatory Shturma—Liuvillya s potentsialami-raspredeleniyami”, Tr. MMO, 64, M., 2003, 159–212 | MR | Zbl
[17] J. Eckhardt, F. Gesztesy, R. Nichols, G. Teschl, “Weyl–Titchmarsh theory for Sturm–Liouville operators with distributional potentials”, Opuscula Math., 33:3 (2013), 467–563 | DOI | MR
[18] K. A. Mirzoev, “Operatory Shturma–Liuvillya”, Tr. MMO, 75, no. 2, MTsNMO, M., 2014, 335–359