Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2018_104_2_a13, author = {E. A. Timoshenko and A. V. Tsarev}, title = {Sequences of {Endomorphism} {Groups} of {Abelian} {Groups}}, journal = {Matemati\v{c}eskie zametki}, pages = {309--317}, publisher = {mathdoc}, volume = {104}, number = {2}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2018_104_2_a13/} }
E. A. Timoshenko; A. V. Tsarev. Sequences of Endomorphism Groups of Abelian Groups. Matematičeskie zametki, Tome 104 (2018) no. 2, pp. 309-317. http://geodesic.mathdoc.fr/item/MZM_2018_104_2_a13/
[1] L. Fuchs, Abelian Groups, Springer, Cham, 2015 | MR | Zbl
[2] P. Schultz, “The endomorphism ring of the additive group of a ring”, J. Austral. Math. Soc., 15:1 (1973), 60–69 | DOI | MR | Zbl
[3] E. M. Kolenova, Opredelyaemost abelevykh grupp gruppami endomorfizmov, Dis. $\dots$ kand. fiz.-matem. nauk, Nizhnii Novgorod, 2006
[4] E. M. Kolenova, “Ob opredelyaemosti periodicheskoi $\mathrm{EndE}^+$-gruppy svoei gruppoi endomorfizmov”, Fundament. i prikl. matem., 13:2 (2007), 123–131 | MR | Zbl
[5] P. Grosse, “Periodizitat der Iterierten Homomorphismengruppen”, Arch. Math. (Basel), 16 (1965), 393–406 | DOI | MR | Zbl
[6] A. V. Grishin, A. V. Tsarëv, “$\mathcal E$-zamknutye gruppy i moduli”, Fundament. i prikl. matem., 17:2 (2012), 97–106 | MR | Zbl
[7] P. A. Krylov, A. V. Mikhalev, A. A. Tuganbaev, Endomorphism Rings of Abelian Groups, Algebr. Appl., 2, Kluwer Acad. Publ., Dordrecht, 2003 | MR | Zbl
[8] T. G. Faticoni, Direct Sum Decompositions of Torsion-Free Finite Rank Groups, Pure Appl. Math. (Boca Raton), 285, CRC Press, Boca Raton, FL, 2007 | MR | Zbl
[9] C. Vinsonhaler, “$E$-rings and related structures”, Non-Noethereian Commutative Ring Theory, Math. Appl., 520, Kluwer Acad. Publ., Dordrecht, 2002, 387–402 | MR
[10] R. A. Bowshell, P. Schultz, “Unital rings whose additive endomorphisms commute”, Math. Ann., 228:3 (1977), 197–214 | DOI | MR | Zbl