Quasiuniversal Fourier--Walsh Series for the Classes~$L^p[0,1]$, $p>1$
Matematičeskie zametki, Tome 104 (2018) no. 2, pp. 273-288.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that, for each number $p>1$, there exists a function $L^1[0,1]$ whose Fourier–Walsh series is quasiuniversal with respect to subseries-signs in the class $L^p[0,1]$ in the sense of $L^p$-convergence.
Keywords: universal series, Walsh system
Mots-clés : Fourier coefficients, $L^p$-convergence.
@article{MZM_2018_104_2_a10,
     author = {A. A. Sargsyan},
     title = {Quasiuniversal {Fourier--Walsh} {Series} for the {Classes~}$L^p[0,1]$, $p>1$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {273--288},
     publisher = {mathdoc},
     volume = {104},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_104_2_a10/}
}
TY  - JOUR
AU  - A. A. Sargsyan
TI  - Quasiuniversal Fourier--Walsh Series for the Classes~$L^p[0,1]$, $p>1$
JO  - Matematičeskie zametki
PY  - 2018
SP  - 273
EP  - 288
VL  - 104
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_104_2_a10/
LA  - ru
ID  - MZM_2018_104_2_a10
ER  - 
%0 Journal Article
%A A. A. Sargsyan
%T Quasiuniversal Fourier--Walsh Series for the Classes~$L^p[0,1]$, $p>1$
%J Matematičeskie zametki
%D 2018
%P 273-288
%V 104
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_104_2_a10/
%G ru
%F MZM_2018_104_2_a10
A. A. Sargsyan. Quasiuniversal Fourier--Walsh Series for the Classes~$L^p[0,1]$, $p>1$. Matematičeskie zametki, Tome 104 (2018) no. 2, pp. 273-288. http://geodesic.mathdoc.fr/item/MZM_2018_104_2_a10/

[1] G. D. Birkhoff, “Démonstration d'un théoréme élémentaire sur les fonctions entiéres”, C. R. Acad. Sci. Paris, 189 (1929), 473–475 | Zbl

[2] G. R. MacLane, “Sequences of derivatives and normal families”, J. Analyse Math., 2 (1952), 72–87 | DOI | MR | Zbl

[3] S. M. Voronin, “Teorema ob “universalnosti” dzeta-funktsii Rimana”, Izv. AN SSSR. Ser. matem., 39:3 (1975), 475–486 | MR | Zbl

[4] K. G. Grosse-Erdmann, Holomorphe Monster und Universelle Funktionen, Dissertation, Mitt. Math. Sem. Giessen, 176, Univ. of Trier, Trier, 1987 | MR

[5] D. E. Menshov, “Ob universalnykh trigonometricheskikh ryadakh”, Dokl. AN SSSR, 49 (1945), 79–82 | MR | Zbl

[6] A. A. Talalyan, “O ryadakh universalnykh otnositelno perestanovok”, Izv. AN Arm. SSR. Ser. matem., 24 (1960), 567–604 | MR

[7] P. L. Ulyanov, “Predstavlenie funktsii ryadami i klassy $\varphi(L)$”, UMN, 27:2 (164) (1972), 3–52 | MR | Zbl

[8] A. M. Olevskii, “O nekotorykh osobennostyakh ryadov Fure v prostranstvakh $L^p$ ($p2$)”, Matem. sb., 77 (119):2 (1968), 251–258 | MR | Zbl

[9] V. I. Ivanov, “Predstavlenie funktsii ryadami v metricheskikh simmetrichnykh prostranstvakh bez lineinykh funktsionalov”, Sbornik trudov Vsesoyuznoi shkoly po teorii funktsii, Tr. MIAN SSSR, 189, Nauka, M., 1989, 34–77 | MR | Zbl

[10] V. G. Krotov, “Ob universalnykh ryada Fure po sisteme Fabera–Shaudera”, Vestn. Moskyu un-ta. Ser. 1. Matem., mekh., 1975, no. 4, 53–58 | MR | Zbl

[11] M. G. Grigorian, “On the representation of functions by orthogonal series in weighted spaces”, Studia Math., 134:3 (1999), 207–216 | DOI | MR | Zbl

[12] M. G. Grigorian, S. A. Episkoposian, “On universal trigonometric series in weighted spaces $L^p_\mu[0,2\pi]$”, East J. Approx., 5:4 (1999), 483–492 | MR | Zbl

[13] M. G. Grigorian, “On orthogonal series universal in $L^p[0,1]$, $p>0$”, J. Contemp. Math. Anal., 37:2 (2002), 16–29 | MR | Zbl

[14] M. G. Grigoryan, “Ob odnoi ortonormirovannoi sisteme”, Izv. vuzov. Matem., 2002, no. 4, 24–28 | MR | Zbl

[15] M. G. Grigorian, “Nonlinear approximation in a trigonometric system in the weighted space $L^p_\mu$”, J. Contemp. Math. Anal., 50:3 (2015), 128–140 | DOI | MR

[16] M. G. Grigorian, K. A. Navasardyan, “On behavior of Fourier coefficients by the Walsh system”, J. Contemp. Math. Anal., 51:1 (2016), 21–33 | MR | Zbl

[17] M. G. Grigorian, A. A. Sargsyan, “On the universal function for the class $L^p[0,1]$, $p\in(0,1)$”, J. Funct. Anal., 270:6 (2016), 3111–3133 | DOI | MR | Zbl

[18] G. G. Gevorgyan, K. A. Navasardyan, “O ryadakh Uolsha s monotonnymi koeffitsientami”, Izv. RAN. Ser. matem., 63:1 (1999), 41–60 | DOI | MR | Zbl

[19] S. A. Episkoposyan, “O suschestvovanie universalnykh ryadov po sisteme Uolsha”, Izvestiya NAN RA. Cer. matem., 38:4 (2003), 25–40 | MR | Zbl

[20] S. A. Episkoposian, “On the existence of universal series by trigonometric system”, J. Funct. Anal., 230:1 (2006), 169–183 | DOI | MR | Zbl

[21] K. A. Navasardyan, “O nul ryadakh po dvoinoi sisteme Uolsha”, Izv. NAN Armenii, 29:1 (1994), 50–68 | Zbl

[22] K. A. Navasardyan, “O ryadakh po sisteme Uolsha s monotonnymi koeffitsientami”, Izv. NAN Armenii, 42:5 (2007), 51–64 | Zbl

[23] B. I. Golubov, A. F. Efimov, V. A. Skvartsov, Ryady i preobrazovaniya Uolsha, Nauka, M., 1987 | MR | Zbl

[24] H. E. Chrestenson, “A class of generalized Walsh functions”, Pacific J. Math., 5 (1955), 17–31 | DOI | MR | Zbl

[25] W. Young, “Mean convergence of generalized Walsh–Fourier series”, Trans. Amer. Math. Soc., 218 (1976), 311–320 | DOI | MR | Zbl