Quasiuniversal Fourier--Walsh Series for the Classes~$L^p[0,1]$, $p>1$
Matematičeskie zametki, Tome 104 (2018) no. 2, pp. 273-288

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that, for each number $p>1$, there exists a function $L^1[0,1]$ whose Fourier–Walsh series is quasiuniversal with respect to subseries-signs in the class $L^p[0,1]$ in the sense of $L^p$-convergence.
Keywords: universal series, Walsh system
Mots-clés : Fourier coefficients, $L^p$-convergence.
@article{MZM_2018_104_2_a10,
     author = {A. A. Sargsyan},
     title = {Quasiuniversal {Fourier--Walsh} {Series} for the {Classes~}$L^p[0,1]$, $p>1$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {273--288},
     publisher = {mathdoc},
     volume = {104},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_104_2_a10/}
}
TY  - JOUR
AU  - A. A. Sargsyan
TI  - Quasiuniversal Fourier--Walsh Series for the Classes~$L^p[0,1]$, $p>1$
JO  - Matematičeskie zametki
PY  - 2018
SP  - 273
EP  - 288
VL  - 104
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_104_2_a10/
LA  - ru
ID  - MZM_2018_104_2_a10
ER  - 
%0 Journal Article
%A A. A. Sargsyan
%T Quasiuniversal Fourier--Walsh Series for the Classes~$L^p[0,1]$, $p>1$
%J Matematičeskie zametki
%D 2018
%P 273-288
%V 104
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_104_2_a10/
%G ru
%F MZM_2018_104_2_a10
A. A. Sargsyan. Quasiuniversal Fourier--Walsh Series for the Classes~$L^p[0,1]$, $p>1$. Matematičeskie zametki, Tome 104 (2018) no. 2, pp. 273-288. http://geodesic.mathdoc.fr/item/MZM_2018_104_2_a10/