On Differential Invariants and Classification of Ordinary Differential Equations of the Form $y''=A(x,y)y'+B(x,y)$
Matematičeskie zametki, Tome 104 (2018) no. 2, pp. 163-173

Voir la notice de l'article provenant de la source Math-Net.Ru

The class of second-order ordinary differential equations $y''=A(x,y)y'+B(x,y)$ is studied by methods of the geometry of jet spaces and the geometric theory of differential equations. The symmetry group of this class of equations is calculated, and the field of differential invariants of its action on equations is described. These results are used to state and prove a criterion for the local equivalence of two nondegenerate ordinary differential equations of the form $y''=A(x,y)y'+B(x,y)$, in which the coefficients $A$ and $B$ are rational in $x$ and $y$.
Keywords: ordinary differential equation, symmetry group, differential invariant.
Mots-clés : jet space
@article{MZM_2018_104_2_a0,
     author = {P. V. Bibikov},
     title = {On {Differential} {Invariants} and {Classification} of {Ordinary} {Differential} {Equations} of the {Form} $y''=A(x,y)y'+B(x,y)$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {163--173},
     publisher = {mathdoc},
     volume = {104},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_104_2_a0/}
}
TY  - JOUR
AU  - P. V. Bibikov
TI  - On Differential Invariants and Classification of Ordinary Differential Equations of the Form $y''=A(x,y)y'+B(x,y)$
JO  - Matematičeskie zametki
PY  - 2018
SP  - 163
EP  - 173
VL  - 104
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_104_2_a0/
LA  - ru
ID  - MZM_2018_104_2_a0
ER  - 
%0 Journal Article
%A P. V. Bibikov
%T On Differential Invariants and Classification of Ordinary Differential Equations of the Form $y''=A(x,y)y'+B(x,y)$
%J Matematičeskie zametki
%D 2018
%P 163-173
%V 104
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_104_2_a0/
%G ru
%F MZM_2018_104_2_a0
P. V. Bibikov. On Differential Invariants and Classification of Ordinary Differential Equations of the Form $y''=A(x,y)y'+B(x,y)$. Matematičeskie zametki, Tome 104 (2018) no. 2, pp. 163-173. http://geodesic.mathdoc.fr/item/MZM_2018_104_2_a0/