On Differential Invariants and Classification of Ordinary Differential Equations of the Form $y''=A(x,y)y'+B(x,y)$
Matematičeskie zametki, Tome 104 (2018) no. 2, pp. 163-173
Voir la notice de l'article provenant de la source Math-Net.Ru
The class of second-order ordinary differential equations $y''=A(x,y)y'+B(x,y)$ is studied by methods of the geometry of jet spaces and the geometric theory of differential equations. The symmetry group of this class of equations is calculated, and the field of differential invariants of its action on equations is described. These results are used to state and prove a criterion for the local equivalence of two nondegenerate ordinary differential equations of the form $y''=A(x,y)y'+B(x,y)$, in which the coefficients $A$ and $B$ are rational in $x$ and $y$.
Keywords:
ordinary differential equation, symmetry group, differential invariant.
Mots-clés : jet space
Mots-clés : jet space
@article{MZM_2018_104_2_a0,
author = {P. V. Bibikov},
title = {On {Differential} {Invariants} and {Classification} of {Ordinary} {Differential} {Equations} of the {Form} $y''=A(x,y)y'+B(x,y)$},
journal = {Matemati\v{c}eskie zametki},
pages = {163--173},
publisher = {mathdoc},
volume = {104},
number = {2},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2018_104_2_a0/}
}
TY - JOUR AU - P. V. Bibikov TI - On Differential Invariants and Classification of Ordinary Differential Equations of the Form $y''=A(x,y)y'+B(x,y)$ JO - Matematičeskie zametki PY - 2018 SP - 163 EP - 173 VL - 104 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2018_104_2_a0/ LA - ru ID - MZM_2018_104_2_a0 ER -
%0 Journal Article %A P. V. Bibikov %T On Differential Invariants and Classification of Ordinary Differential Equations of the Form $y''=A(x,y)y'+B(x,y)$ %J Matematičeskie zametki %D 2018 %P 163-173 %V 104 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2018_104_2_a0/ %G ru %F MZM_2018_104_2_a0
P. V. Bibikov. On Differential Invariants and Classification of Ordinary Differential Equations of the Form $y''=A(x,y)y'+B(x,y)$. Matematičeskie zametki, Tome 104 (2018) no. 2, pp. 163-173. http://geodesic.mathdoc.fr/item/MZM_2018_104_2_a0/