On the Metric Space of Closed Subsets of a Metric Space and Set-Valued Maps with Closed Images
Matematičeskie zametki, Tome 104 (2018) no. 1, pp. 99-117.

Voir la notice de l'article provenant de la source Math-Net.Ru

The space $\operatorname{clos}(X)$ of all nonempty closed subsets of an unbounded metric space $X$ is considered. The space $\operatorname{clos}(X)$ is endowed with a metric in which a sequence of closed sets converges if and only if the distances from these sets to a fixed point $\theta$ are bounded and, for any $r$, the sequence of the unions of the given sets with the exterior balls of radius $r$ centered at $\theta$ converges in the Hausdorff metric. The metric on $\operatorname{clos}(X)$ thus defined is not equivalent to the Hausdorff metric, whatever the initial metric space $X$. Conditions for a set to be closed, totally bounded, or compact in $\operatorname{clos}(X)$ are obtained; criteria for the bounded compactness and separability of $\operatorname{clos}(X)$ are given. The space of continuous maps from a compact space to $\operatorname{clos}(X)$ is considered; conditions for a set to be totally bounded in this space are found.
Keywords: space of nonempty closed subsets of a metric space, total boundedness, set-valued map.
@article{MZM_2018_104_1_a9,
     author = {E. A. Panasenko},
     title = {On the {Metric} {Space} of {Closed} {Subsets} of a {Metric} {Space} and {Set-Valued} {Maps} with {Closed} {Images}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {99--117},
     publisher = {mathdoc},
     volume = {104},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_104_1_a9/}
}
TY  - JOUR
AU  - E. A. Panasenko
TI  - On the Metric Space of Closed Subsets of a Metric Space and Set-Valued Maps with Closed Images
JO  - Matematičeskie zametki
PY  - 2018
SP  - 99
EP  - 117
VL  - 104
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_104_1_a9/
LA  - ru
ID  - MZM_2018_104_1_a9
ER  - 
%0 Journal Article
%A E. A. Panasenko
%T On the Metric Space of Closed Subsets of a Metric Space and Set-Valued Maps with Closed Images
%J Matematičeskie zametki
%D 2018
%P 99-117
%V 104
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_104_1_a9/
%G ru
%F MZM_2018_104_1_a9
E. A. Panasenko. On the Metric Space of Closed Subsets of a Metric Space and Set-Valued Maps with Closed Images. Matematičeskie zametki, Tome 104 (2018) no. 1, pp. 99-117. http://geodesic.mathdoc.fr/item/MZM_2018_104_1_a9/

[1] E. S. Zhukovskiy, E. A. Panasenko, “On multi-valued maps with images in the space of closed subsets of a metric space”, Fixed Point Theory Appl., 2013:10 (2013) | DOI | MR | Zbl

[2] E. A. Panasenko, “O vpolne ogranichennykh i kompaktnykh mnozhestvakh v prostranstve zamknutykh podmnozhestv metricheskogo prostranstva”, Vestn. Tambovskogo un-ta. Ser. Estestv. i tekh. nauki, 20:5 (2015), 1340–1344

[3] E. A. Panasenko, “Dinamicheskaya sistema sdvigov v prostranstve mnogoznachnykh funktsii s zamknutymi obrazami”, Vestn. Udmurtskogo un-ta. Matem. Mekh. Kompyuternye nauki, 2012, no. 2, 28–33 | Zbl

[4] E. S. Zhukovskii, E. A. Panasenko, “Opredelenie metriki prostranstva $\mathrm{clos}_{\varnothing}(X)$ zamknutykh podmnozhestv metricheskogo prostranstva $X$ i svoistva otobrazhenii so znacheniyami v $\mathrm{clos}_{\varnothing}(\mathbb R^n)$”, Matem. sb., 205:9 (2014), 65–96 | DOI | MR | Zbl

[5] A. A. Tolstonogov, “Kompaktnost v prostranstve mnogoznachnykh otobrazhenii s zamknutymi znacheniyami”, Dokl. AN, 456:2 (2014), 146–149 | DOI | MR | Zbl

[6] E. A. Panasenko, E. L. Tonkov, “Rasprostranenie teorem E. A. Barbashina i N. N. Krasovskogo ob ustoichivosti na upravlyaemye dinamicheskie sistemy”, Tr. IMM UrO RAN, 15, no. 3, 2009, 185–201

[7] P. D. Lebedev, V. N. Ushakov, “Ob odnom variante metriki dlya neogranichennykh vypuklykh mnozhestv”, Vestn. Yuzhno-Ur. un-ta. Ser. Matem. Mekh. Fiz., 5:1 (2013), 40–49 | Zbl

[8] G. Beer, “Metric spaces with nice closed balls and distance functions for closed sets”, Bull. Austral. Math. Soc., 35:1 (1987), 81–96 | DOI | MR | Zbl

[9] A. Lechicki, S. Levi, “Wijsman convergence in the hyperspace of a metric space”, Boll. Un. Mat. Ital. B (7), 1:2 (1987), 439–451 | MR | Zbl

[10] E. S. Zhukovskii, E. A. Panasenko, “Ob odnoi metrike v prostranstve nepustykh zamknutykh podmnozhestv prostranstva ${\mathbb R}^n$”, Vestn. Udmurtskogo un-ta. Matem. Mekh. Kompyuternye nauki, 2012, no. 1, 15–25 | Zbl

[11] A. V. Arutyunov, Lektsii po vypuklomu i mnogoznachnomu analizu, Fizmatlit, M., 2014

[12] C. Castaing, M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Math., 580, Springer-Verlag, New York, 1977 | DOI | MR | Zbl

[13] D. Yu. Burago, Yu. D. Burago, S. V. Ivanov, Kurs metricheskoi geometrii, In-t kompyuternykh issledovanii, M.–Izhevsk, 2004

[14] A. N. Kolmogorov, S. V. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1972 | MR | Zbl

[15] L. V. Kantorovich, G. P. Akilov, Funktsionalnyi analiz, Nauka, M., 1977 | MR | Zbl

[16] Dzh. L. Kelli, Obschaya topologiya, Nauka, M., 1981 | MR | Zbl