On the Metric Space of Closed Subsets of a Metric Space and Set-Valued Maps with Closed Images
Matematičeskie zametki, Tome 104 (2018) no. 1, pp. 99-117

Voir la notice de l'article provenant de la source Math-Net.Ru

The space $\operatorname{clos}(X)$ of all nonempty closed subsets of an unbounded metric space $X$ is considered. The space $\operatorname{clos}(X)$ is endowed with a metric in which a sequence of closed sets converges if and only if the distances from these sets to a fixed point $\theta$ are bounded and, for any $r$, the sequence of the unions of the given sets with the exterior balls of radius $r$ centered at $\theta$ converges in the Hausdorff metric. The metric on $\operatorname{clos}(X)$ thus defined is not equivalent to the Hausdorff metric, whatever the initial metric space $X$. Conditions for a set to be closed, totally bounded, or compact in $\operatorname{clos}(X)$ are obtained; criteria for the bounded compactness and separability of $\operatorname{clos}(X)$ are given. The space of continuous maps from a compact space to $\operatorname{clos}(X)$ is considered; conditions for a set to be totally bounded in this space are found.
Keywords: space of nonempty closed subsets of a metric space, total boundedness, set-valued map.
@article{MZM_2018_104_1_a9,
     author = {E. A. Panasenko},
     title = {On the {Metric} {Space} of {Closed} {Subsets} of a {Metric} {Space} and {Set-Valued} {Maps} with {Closed} {Images}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {99--117},
     publisher = {mathdoc},
     volume = {104},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_104_1_a9/}
}
TY  - JOUR
AU  - E. A. Panasenko
TI  - On the Metric Space of Closed Subsets of a Metric Space and Set-Valued Maps with Closed Images
JO  - Matematičeskie zametki
PY  - 2018
SP  - 99
EP  - 117
VL  - 104
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_104_1_a9/
LA  - ru
ID  - MZM_2018_104_1_a9
ER  - 
%0 Journal Article
%A E. A. Panasenko
%T On the Metric Space of Closed Subsets of a Metric Space and Set-Valued Maps with Closed Images
%J Matematičeskie zametki
%D 2018
%P 99-117
%V 104
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_104_1_a9/
%G ru
%F MZM_2018_104_1_a9
E. A. Panasenko. On the Metric Space of Closed Subsets of a Metric Space and Set-Valued Maps with Closed Images. Matematičeskie zametki, Tome 104 (2018) no. 1, pp. 99-117. http://geodesic.mathdoc.fr/item/MZM_2018_104_1_a9/