Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2018_104_1_a6, author = {P. N. Klepikov}, title = {Conformally {Flat} {Algebraic} {Ricci} {Solitons} on {Lie} {Groups}}, journal = {Matemati\v{c}eskie zametki}, pages = {62--73}, publisher = {mathdoc}, volume = {104}, number = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2018_104_1_a6/} }
P. N. Klepikov. Conformally Flat Algebraic Ricci Solitons on Lie Groups. Matematičeskie zametki, Tome 104 (2018) no. 1, pp. 62-73. http://geodesic.mathdoc.fr/item/MZM_2018_104_1_a6/
[1] A. Besse, Mnogoobraziya Enshteina, T. 1, 2, Mir, M., 1990 | MR | Zbl
[2] Yu. G. Nikonorov, E. D. Rodionov, V. V. Slavskii, “Geometriya odnorodnykh rimanovykh mnogoobrazii”, Geometriya, Sovrem. matem. i ee pril., 37, In-t kibernetiki AN Gruzii, 2006, 101–178
[3] R. S. Hamilton, “The Ricci flow on surfaces”, Mathematics and General Relativity, Contemp. Math., 71, Amer. Math. Soc., Providence, RI, 1988, 237–262 | DOI | MR | Zbl
[4] F. L. Di Cerbo, “Generic properties of homogeneous Ricci solitons”, Adv. Geom., 14:2 (2014), 225–237 | DOI | MR | Zbl
[5] P. N. Klepikov, D. N. Oskorbin, “Odnorodnye invariantnye solitony Richchi na chetyrekhmernykh gruppakh Li”, Izv. AltGU, 85:1/2 (2015), 122–129
[6] J. Lauret, “Ricci soliton homogeneous nilmanifolds”, Math. Ann., 319:4 (2001), 715–733 | DOI | MR | Zbl
[7] K. Onda, “Examples of algebraic Ricci solitons in the pseudo-Riemannian case”, Acta Math. Hungar., 144:1 (2014), 247–265 | DOI | MR | Zbl
[8] M. Chaichi, Y. Keshavarzi, “Conformally flat pseudo-Riemannian homogeneous Ricci solitons $4$-spaces”, Indian J. Sci. Tech., 8:12 (2015), 1–11 | DOI
[9] G. Catino, C. Mantegazza, “The evolution of the Weyl tensor under the Ricci flow”, Ann. Inst. Fourier (Grenoble), 61:4 (2011), 1407–1435 | DOI | MR | Zbl
[10] P. N. Klepikov, D. N. Oskorbin, “Konformno ploskie solitony Richchi na gruppakh Li s levoinvariantnoi (psevdo)rimanovoi metrikoi”, Izv. AltGU, 89:1 (2016), 123–128
[11] P. N. Klepikov, E. D. Rodionov, “Algebraicheskie solitony Richchi na metricheskikh gruppakh Li s nulevym tenzorom Skhoutena–Veilya”, Dokl. AN, 472:5 (2017), 506–508 | MR | Zbl
[12] H.-D. Cao, “Recent progress on Ricci solitons”, Recent Advances in Geometric Analysis, Adv. Lect. Math. (ALM), 11, Int. Press, Somerville, MA, 2010, 1–38 | MR | Zbl
[13] R. M. Arroyo, R. Lafuente, “Homogeneous Ricci solitons in low dimensions”, Int. Math. Res. Not. IMRN, 2015, no. 13, 4901–4932 | DOI | MR | Zbl
[14] J. Lauret, “Einstein solvmanifolds and nilsolitons”, New Development in Lie Theory and Geometry, Contemp. Math., 491, Amer. Math. Soc., Providence, RI, 2009, 1–35 | DOI | MR | Zbl
[15] D. V. Alekseevskii, B. N. Kimelfeld, “Stroenie odnorodnykh rimanovykh prostranstv s nulevoi kriviznoi Richchi”, Funkts. analiz i ego pril., 9:2 (1975), 5–11 | MR | Zbl
[16] P. Petersen, W. Wylie, “On gradient Ricci solitons with symmetry”, Proc. Amer. Math. Soc, 137:6 (2009), 2085–2092 | DOI | MR | Zbl
[17] T. Ivey, “Ricci solitons on compact three-manifolds”, Differential Geom. Appl., 3:4 (1993), 301–307 | MR | Zbl
[18] T. Jentsch, The Jet Isomorphism Theorem of Pseudo-Riemannian Geometry, 2015, arXiv: 1509.08269
[19] B. O'Neill, Semi-Riemannian Geometry. With Applications to Relativity, Academic Press, New York, 1983 | MR
[20] K. Honda, “Conformally flat semi-Riemannian manifolds with commuting curvature and Ricci operators”, Tokyo J. Math., 26:1 (2003), 241–260 | DOI | MR | Zbl
[21] M. Brozos-Vázquez, E. Garcia-Río, P. Gilkey, S. Nikčević, R. Vázquez-Lorenzo, The Geometry of Walker Manifolds, Morgan and Claypool Publ., Williston, VT, 2009 | MR