Conformally Flat Algebraic Ricci Solitons on Lie Groups
Matematičeskie zametki, Tome 104 (2018) no. 1, pp. 62-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the study of conformally flat Lie groups with left-invariant (pseudo) Riemannian metric of an algebraic Ricci soliton. Previously conformally flat algebraic Ricci solitons on Lie groups have been studied in the case of small dimension and under an additional diagonalizability condition on the Ricci operator. The present paper continues these studies without the additional requirement that the Ricci operator be diagonalizable. It is proved that any nontrivial conformally flat algebraic Ricci soliton on a Lie group must be steady and have Ricci operator of Segrè type $\{(1\,\dots 1\,2)\}$ with a unique eigenvalue (equal to 0).
Keywords: metric Lie group, conformally flat (pseudo) Riemannian metric
Mots-clés : algebraic Ricci soliton.
@article{MZM_2018_104_1_a6,
     author = {P. N. Klepikov},
     title = {Conformally {Flat} {Algebraic} {Ricci} {Solitons} on {Lie} {Groups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {62--73},
     publisher = {mathdoc},
     volume = {104},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_104_1_a6/}
}
TY  - JOUR
AU  - P. N. Klepikov
TI  - Conformally Flat Algebraic Ricci Solitons on Lie Groups
JO  - Matematičeskie zametki
PY  - 2018
SP  - 62
EP  - 73
VL  - 104
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_104_1_a6/
LA  - ru
ID  - MZM_2018_104_1_a6
ER  - 
%0 Journal Article
%A P. N. Klepikov
%T Conformally Flat Algebraic Ricci Solitons on Lie Groups
%J Matematičeskie zametki
%D 2018
%P 62-73
%V 104
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_104_1_a6/
%G ru
%F MZM_2018_104_1_a6
P. N. Klepikov. Conformally Flat Algebraic Ricci Solitons on Lie Groups. Matematičeskie zametki, Tome 104 (2018) no. 1, pp. 62-73. http://geodesic.mathdoc.fr/item/MZM_2018_104_1_a6/

[1] A. Besse, Mnogoobraziya Enshteina, T. 1, 2, Mir, M., 1990 | MR | Zbl

[2] Yu. G. Nikonorov, E. D. Rodionov, V. V. Slavskii, “Geometriya odnorodnykh rimanovykh mnogoobrazii”, Geometriya, Sovrem. matem. i ee pril., 37, In-t kibernetiki AN Gruzii, 2006, 101–178

[3] R. S. Hamilton, “The Ricci flow on surfaces”, Mathematics and General Relativity, Contemp. Math., 71, Amer. Math. Soc., Providence, RI, 1988, 237–262 | DOI | MR | Zbl

[4] F. L. Di Cerbo, “Generic properties of homogeneous Ricci solitons”, Adv. Geom., 14:2 (2014), 225–237 | DOI | MR | Zbl

[5] P. N. Klepikov, D. N. Oskorbin, “Odnorodnye invariantnye solitony Richchi na chetyrekhmernykh gruppakh Li”, Izv. AltGU, 85:1/2 (2015), 122–129

[6] J. Lauret, “Ricci soliton homogeneous nilmanifolds”, Math. Ann., 319:4 (2001), 715–733 | DOI | MR | Zbl

[7] K. Onda, “Examples of algebraic Ricci solitons in the pseudo-Riemannian case”, Acta Math. Hungar., 144:1 (2014), 247–265 | DOI | MR | Zbl

[8] M. Chaichi, Y. Keshavarzi, “Conformally flat pseudo-Riemannian homogeneous Ricci solitons $4$-spaces”, Indian J. Sci. Tech., 8:12 (2015), 1–11 | DOI

[9] G. Catino, C. Mantegazza, “The evolution of the Weyl tensor under the Ricci flow”, Ann. Inst. Fourier (Grenoble), 61:4 (2011), 1407–1435 | DOI | MR | Zbl

[10] P. N. Klepikov, D. N. Oskorbin, “Konformno ploskie solitony Richchi na gruppakh Li s levoinvariantnoi (psevdo)rimanovoi metrikoi”, Izv. AltGU, 89:1 (2016), 123–128

[11] P. N. Klepikov, E. D. Rodionov, “Algebraicheskie solitony Richchi na metricheskikh gruppakh Li s nulevym tenzorom Skhoutena–Veilya”, Dokl. AN, 472:5 (2017), 506–508 | MR | Zbl

[12] H.-D. Cao, “Recent progress on Ricci solitons”, Recent Advances in Geometric Analysis, Adv. Lect. Math. (ALM), 11, Int. Press, Somerville, MA, 2010, 1–38 | MR | Zbl

[13] R. M. Arroyo, R. Lafuente, “Homogeneous Ricci solitons in low dimensions”, Int. Math. Res. Not. IMRN, 2015, no. 13, 4901–4932 | DOI | MR | Zbl

[14] J. Lauret, “Einstein solvmanifolds and nilsolitons”, New Development in Lie Theory and Geometry, Contemp. Math., 491, Amer. Math. Soc., Providence, RI, 2009, 1–35 | DOI | MR | Zbl

[15] D. V. Alekseevskii, B. N. Kimelfeld, “Stroenie odnorodnykh rimanovykh prostranstv s nulevoi kriviznoi Richchi”, Funkts. analiz i ego pril., 9:2 (1975), 5–11 | MR | Zbl

[16] P. Petersen, W. Wylie, “On gradient Ricci solitons with symmetry”, Proc. Amer. Math. Soc, 137:6 (2009), 2085–2092 | DOI | MR | Zbl

[17] T. Ivey, “Ricci solitons on compact three-manifolds”, Differential Geom. Appl., 3:4 (1993), 301–307 | MR | Zbl

[18] T. Jentsch, The Jet Isomorphism Theorem of Pseudo-Riemannian Geometry, 2015, arXiv: 1509.08269

[19] B. O'Neill, Semi-Riemannian Geometry. With Applications to Relativity, Academic Press, New York, 1983 | MR

[20] K. Honda, “Conformally flat semi-Riemannian manifolds with commuting curvature and Ricci operators”, Tokyo J. Math., 26:1 (2003), 241–260 | DOI | MR | Zbl

[21] M. Brozos-Vázquez, E. Garcia-Río, P. Gilkey, S. Nikčević, R. Vázquez-Lorenzo, The Geometry of Walker Manifolds, Morgan and Claypool Publ., Williston, VT, 2009 | MR