Rigidity of Actions with Extreme Deviation from Multiple Mixing
Matematičeskie zametki, Tome 103 (2018) no. 6, pp. 912-926.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce a class of systems, including Ledrappier's example, which do not have multiple mixing. A classification of such systems for 2D lattice actions is constructed.
Keywords: measure-preserving transformation, dynamical system, multiple mixing, Ledrappier's example.
@article{MZM_2018_103_6_a9,
     author = {S. V. Tikhonov},
     title = {Rigidity of {Actions} with {Extreme} {Deviation} from {Multiple} {Mixing}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {912--926},
     publisher = {mathdoc},
     volume = {103},
     number = {6},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_6_a9/}
}
TY  - JOUR
AU  - S. V. Tikhonov
TI  - Rigidity of Actions with Extreme Deviation from Multiple Mixing
JO  - Matematičeskie zametki
PY  - 2018
SP  - 912
EP  - 926
VL  - 103
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_103_6_a9/
LA  - ru
ID  - MZM_2018_103_6_a9
ER  - 
%0 Journal Article
%A S. V. Tikhonov
%T Rigidity of Actions with Extreme Deviation from Multiple Mixing
%J Matematičeskie zametki
%D 2018
%P 912-926
%V 103
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_103_6_a9/
%G ru
%F MZM_2018_103_6_a9
S. V. Tikhonov. Rigidity of Actions with Extreme Deviation from Multiple Mixing. Matematičeskie zametki, Tome 103 (2018) no. 6, pp. 912-926. http://geodesic.mathdoc.fr/item/MZM_2018_103_6_a9/

[1] V. V. Ryzhikov, “Peremeshivanie, rang i minimalnoe samoprisoedinenie deistvii s invariantnoi meroi”, Matem. sb., 183:3 (1992), 133–160 | MR | Zbl

[2] V. A. Rokhlin, “Ob endomorfizmakh kompaktnykh kommutativnykh grupp”, Izv. AN SSSR. Ser. matem., 13:4 (1949), 329–340 | MR | Zbl

[3] F. Ledrappier, “Un champ markovien peut etre d'entropie nulle et melangeant”, C. R. Acad. Sci. Paris Sér. A, 287:7 (1978), 561–563 | MR | Zbl

[4] K. Schmidt, “Dynamical properties of principal algebraic group actions”, Ergodic Theory and Dynamical Systems: Perspectives and Prospects, 2012 https://warwick.ac.uk/fac/sci/maths/research/events/2010-2011/symposium1011/etdspp/schedule/schmidt.pdf

[5] S. V. Tikhonov, “Ob otsutstvii kratnogo peremeshivaniya i tsentralizatore sokhranyayuschikh meru deistvii”, Matem. zametki, 97:4 (2015), 636–640 | DOI | MR | Zbl

[6] Th. de La Rue, J. de Sam Lazaro, “Une transformation générique peut être insérée dans un flot”, Ann. Inst. H. Poincaré Probab. Statist., 39:1 (2003), 121–134 | MR | Zbl

[7] A. M. Stepin, A. M. Eremenko, “Tipichnoe sokhranyayuschee meru preobrazovanie imeet obshirnyi tsentralizator”, Dokl. AN, 394:6 (2004), 739–742 | MR | Zbl

[8] S. V. Tikhonov, “Tipichnoe deistvie gruppy $\mathbb{Z}^{d}$ vkladyvaetsya v deistvie gruppy $\mathbb{R}^{d}$”, Dokl. AN, 391:1 (2003), 26–28 | MR | Zbl

[9] S. V. Tikhonov, “Vlozheniya deistvii reshetki v potoki s mnogomernym vremenem”, Matem. sb., 197:1 (2006), 97–132 | DOI | MR | Zbl

[10] D. Koks, Dzh. Littl, D. O'Shi, Idealy, mnogoobraziya i algoritmy. Vvedenie v vychislitelnye aspekty algebraicheskoi geometrii i kommutativnoi algebry, Mir, M., 2000 | MR | Zbl

[11] T. Ward, “Three results on mixing shapes”, New York J. Math., 3A (1997), 1–10 | MR | Zbl

[12] M. Einsiedler, T. Ward, “Entropy geometry and disjointness for zero-dimensional algebraic actions”, J. Reine Angew. Math., 584 (2005), 195–214 | DOI | MR | Zbl

[13] V. V. Ryzhikov, “Ob asimmetrii kratnykh asimptoticheskikh svoistv ergodicheskikh deistvii”, Matem. zametki, 96:3 (2014), 432–439 | DOI | MR | Zbl

[14] K. Schmidt, Dynamical Systems of Algebraic Origin, Progr. Math., 128, Birkhäuser Verlag, Basel, 1995 | MR