Rigidity of Actions with Extreme Deviation from Multiple Mixing
Matematičeskie zametki, Tome 103 (2018) no. 6, pp. 912-926

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce a class of systems, including Ledrappier's example, which do not have multiple mixing. A classification of such systems for 2D lattice actions is constructed.
Keywords: measure-preserving transformation, dynamical system, multiple mixing, Ledrappier's example.
@article{MZM_2018_103_6_a9,
     author = {S. V. Tikhonov},
     title = {Rigidity of {Actions} with {Extreme} {Deviation} from {Multiple} {Mixing}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {912--926},
     publisher = {mathdoc},
     volume = {103},
     number = {6},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_6_a9/}
}
TY  - JOUR
AU  - S. V. Tikhonov
TI  - Rigidity of Actions with Extreme Deviation from Multiple Mixing
JO  - Matematičeskie zametki
PY  - 2018
SP  - 912
EP  - 926
VL  - 103
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_103_6_a9/
LA  - ru
ID  - MZM_2018_103_6_a9
ER  - 
%0 Journal Article
%A S. V. Tikhonov
%T Rigidity of Actions with Extreme Deviation from Multiple Mixing
%J Matematičeskie zametki
%D 2018
%P 912-926
%V 103
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_103_6_a9/
%G ru
%F MZM_2018_103_6_a9
S. V. Tikhonov. Rigidity of Actions with Extreme Deviation from Multiple Mixing. Matematičeskie zametki, Tome 103 (2018) no. 6, pp. 912-926. http://geodesic.mathdoc.fr/item/MZM_2018_103_6_a9/