Axiomatization and Polynomial Solvability of Strictly Positive Fragments of Certain Modal Logics
Matematičeskie zametki, Tome 103 (2018) no. 6, pp. 884-901

Voir la notice de l'article provenant de la source Math-Net.Ru

The fragment of the language of modal logic that consists of all implications $A\to B$, where $A$ and $B$ are built from variables, the constant $\top$ (truth), and the connectives $\wedge$ and $\diamondsuit_1, \diamondsuit_2, \dots, \diamondsuit_m$. For the polymodal logic $S5_m$ (the logic of $m$ equivalence relations) and the logic $K4.3$ (the logic of irreflexive linear orders), an axiomatization of such fragments is found and their algorithmic decidability in polynomial time is proved.
Keywords: strictly positive modal logic, epistemic logic.
@article{MZM_2018_103_6_a7,
     author = {M. V. Svyatlovskiy},
     title = {Axiomatization and {Polynomial} {Solvability} of {Strictly} {Positive} {Fragments} of {Certain} {Modal} {Logics}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {884--901},
     publisher = {mathdoc},
     volume = {103},
     number = {6},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_6_a7/}
}
TY  - JOUR
AU  - M. V. Svyatlovskiy
TI  - Axiomatization and Polynomial Solvability of Strictly Positive Fragments of Certain Modal Logics
JO  - Matematičeskie zametki
PY  - 2018
SP  - 884
EP  - 901
VL  - 103
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_103_6_a7/
LA  - ru
ID  - MZM_2018_103_6_a7
ER  - 
%0 Journal Article
%A M. V. Svyatlovskiy
%T Axiomatization and Polynomial Solvability of Strictly Positive Fragments of Certain Modal Logics
%J Matematičeskie zametki
%D 2018
%P 884-901
%V 103
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_103_6_a7/
%G ru
%F MZM_2018_103_6_a7
M. V. Svyatlovskiy. Axiomatization and Polynomial Solvability of Strictly Positive Fragments of Certain Modal Logics. Matematičeskie zametki, Tome 103 (2018) no. 6, pp. 884-901. http://geodesic.mathdoc.fr/item/MZM_2018_103_6_a7/