Axiomatization and Polynomial Solvability of Strictly Positive Fragments of Certain Modal Logics
Matematičeskie zametki, Tome 103 (2018) no. 6, pp. 884-901.

Voir la notice de l'article provenant de la source Math-Net.Ru

The fragment of the language of modal logic that consists of all implications $A\to B$, where $A$ and $B$ are built from variables, the constant $\top$ (truth), and the connectives $\wedge$ and $\diamondsuit_1, \diamondsuit_2, \dots, \diamondsuit_m$. For the polymodal logic $S5_m$ (the logic of $m$ equivalence relations) and the logic $K4.3$ (the logic of irreflexive linear orders), an axiomatization of such fragments is found and their algorithmic decidability in polynomial time is proved.
Keywords: strictly positive modal logic, epistemic logic.
@article{MZM_2018_103_6_a7,
     author = {M. V. Svyatlovskiy},
     title = {Axiomatization and {Polynomial} {Solvability} of {Strictly} {Positive} {Fragments} of {Certain} {Modal} {Logics}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {884--901},
     publisher = {mathdoc},
     volume = {103},
     number = {6},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_6_a7/}
}
TY  - JOUR
AU  - M. V. Svyatlovskiy
TI  - Axiomatization and Polynomial Solvability of Strictly Positive Fragments of Certain Modal Logics
JO  - Matematičeskie zametki
PY  - 2018
SP  - 884
EP  - 901
VL  - 103
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_103_6_a7/
LA  - ru
ID  - MZM_2018_103_6_a7
ER  - 
%0 Journal Article
%A M. V. Svyatlovskiy
%T Axiomatization and Polynomial Solvability of Strictly Positive Fragments of Certain Modal Logics
%J Matematičeskie zametki
%D 2018
%P 884-901
%V 103
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_103_6_a7/
%G ru
%F MZM_2018_103_6_a7
M. V. Svyatlovskiy. Axiomatization and Polynomial Solvability of Strictly Positive Fragments of Certain Modal Logics. Matematičeskie zametki, Tome 103 (2018) no. 6, pp. 884-901. http://geodesic.mathdoc.fr/item/MZM_2018_103_6_a7/

[1] M. Jackson, “Semilattices with closure”, Algebra Universalis, 52:1 (2004), 1–37 | DOI | MR | Zbl

[2] C. Lutz, F. Wolter, “Mathematical logic for life science ontologies.”, Logic, Language, Information, and Computation, Lecture Notes in Comput. Sci., 5514, Springer, Berlin, 2009, 37–47 | MR | Zbl

[3] F. Baader, R. Küsters, R. Molitor, “Computing least common subsumers in description logics with existential restrictions”, Proceedings of the 16th International Joint Conference on Artificial Intelligence (IJCAI'99), Morgan Kaufmann, 1999, 96–101

[4] SNOMED, http://www.ihtsdo.org/snomed-ct

[5] L. D. Beklemishev, “Provability algebras and proof-theoretic ordinals. I”, Ann. Pure Appl. Logic, 128:1-3 (2004), 103–123 | DOI | MR | Zbl

[6] L. D. Beklemishev, “The worm principle”, Logic Colloquium '02, Lect. Notes Log., 27, Assoc. Symbol. Logic, La Jolla, CA, 2006, 75–95 ; Logic Group Preprint Series. Vol. 219, Utrecht Univ., 2003 https://dspace.library.uu.nl/handle/1874/27024 | MR | Zbl

[7] L. Beklemishev, “Calibrating provability logic: from modal logic to reflection calculus”, Advances in Modal Logic, Vol. 9, Coll. Publ., London, 2012, 89–94 | MR

[8] L. D. Beklemishev, “On the reflection calculus with partial conservativity operators”, Logic, Language, Information, and Computation, Lecture Notes in Comput. Sci., 10388, Springer, Berlin, 2017, 48–67 | DOI | MR | Zbl

[9] E. V. Dashkov, “O pozitivnom fragmente polimodalnoi logiki dokazuemosti $\mathbf{GLP}$”, Matem. zametki, 91:3 (2012), 331–346 | DOI | MR | Zbl

[10] G. K. Dzhaparidze, Modalno-logicheskie sredstva issledovaniya dokazuemosti, Dis. kand. filos. nauk, MGU, M., 1986

[11] G. Boolos, The Logic of Provability, Cambridge Univ. Press, Cambridge, 1993 | MR

[12] I. Shapirovsky, “PSPACE–decidability of Japaridze's polymodal logic”, Advances in Modal Logic, Vol. 7, Coll. Publ., London, 2008, 289–304 | MR

[13] F. Pakhomov, “On the complexity of the closed fragment of Japaridze's provability logic”, Arch. Math. Logic, 53:7 (2014), 949–967 | DOI | MR | Zbl

[14] L. D. Beklemishev, “Positive probability logic for uniform reflection principles”, Ann. Pure Appl. Logic, 165:1 (2014), 82–105 | DOI | MR | Zbl

[15] L. D. Beklemishev, “A universal algebra for the variable-free fragment of $\mathrm{RC}^\nabla$”, Logical Foundations of Computer Science, Lecture Notes in Comp. Sci., 10703, Springer, Cham, 2018, 91–106 | DOI | Zbl

[16] L. Beklemishev, “A note on strictly positive logics and word rewriting systems”, Larisa Maksimova on Implication, Interpolation, and Definability, Outstanding Contributions to Logic, 15, Springer, Cham, 2017, 61–70 | DOI

[17] A. Kurucz, Y. Tanaka, F. Wolter, M. Zakharyaschev, “Conservativity of Boolean algebras with operators over semilattices with operators”, Proceedings of the Conference on Topology, Algebra and Categories in Logic, 2011, 49–52

[18] S. Kikot, A. Kurucz, Y. Tanaka, F. Wolter, M. Zakharyaschev, “On the completeness of EL-equiations: First results”, 11th International Conference on Advances in Modal Logic (Budapest, 30 August–2 September, 2016), 2016, 82–87

[19] S. Kikot, A. Kurucz, Y. Tanaka, F. Wolter, M. Zakharyaschev, Kripke Completeness of Strictly Positive Modal Logics over Meet-Semilattices with Operators, 2017, arXiv: 1708.03403

[20] S. Kaniskin, O pozitivnykh fragmentakh modalnykh logik, Diplomnaya rabota, MGU, 2013

[21] R. Fagin, J. Y. Halpern, Y. Moses, M. Y. Vardi, Reasoning About Knowledge, MIT Press, Cambridge, MA, 1995 | MR

[22] H. van Ditmarsch, J. Y. Halpern, W. van der Hoek, B. Kooi, Handbook of Epistemic Logic, Coll. Publ., London, 2015

[23] A. Chagrov, M. Zakharyaschev, Modal Logic, Oxford Logic Guides, 35, Oxford Univ. Press, Oxford, 1997 | MR | Zbl