Axiomatization and Polynomial Solvability of Strictly Positive Fragments of Certain Modal Logics
Matematičeskie zametki, Tome 103 (2018) no. 6, pp. 884-901
Voir la notice de l'article provenant de la source Math-Net.Ru
The fragment of the language of modal logic that consists of all implications $A\to B$, where $A$ and $B$ are built from variables, the constant $\top$ (truth), and the connectives $\wedge$ and $\diamondsuit_1, \diamondsuit_2, \dots, \diamondsuit_m$. For the polymodal logic $S5_m$ (the logic of $m$ equivalence relations) and the logic $K4.3$ (the logic of irreflexive linear orders), an axiomatization of such fragments is found and their algorithmic decidability in polynomial time is proved.
Keywords:
strictly positive modal logic, epistemic logic.
@article{MZM_2018_103_6_a7,
author = {M. V. Svyatlovskiy},
title = {Axiomatization and {Polynomial} {Solvability} of {Strictly} {Positive} {Fragments} of {Certain} {Modal} {Logics}},
journal = {Matemati\v{c}eskie zametki},
pages = {884--901},
publisher = {mathdoc},
volume = {103},
number = {6},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_6_a7/}
}
TY - JOUR AU - M. V. Svyatlovskiy TI - Axiomatization and Polynomial Solvability of Strictly Positive Fragments of Certain Modal Logics JO - Matematičeskie zametki PY - 2018 SP - 884 EP - 901 VL - 103 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2018_103_6_a7/ LA - ru ID - MZM_2018_103_6_a7 ER -
M. V. Svyatlovskiy. Axiomatization and Polynomial Solvability of Strictly Positive Fragments of Certain Modal Logics. Matematičeskie zametki, Tome 103 (2018) no. 6, pp. 884-901. http://geodesic.mathdoc.fr/item/MZM_2018_103_6_a7/