Rademacher Chaoses in Problems of Constructing Spline Affine Systems
Matematičeskie zametki, Tome 103 (2018) no. 6, pp. 863-874
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper considers systems of dilations and translations of spline functions $\psi_m$ each of which is obtained by successive integration and antiperiodization of the previous one and the initial function is the Haar function $\chi$. It is proved that, first, each such function $\psi_m$ is the sum of finitely many series in Rademacher chaoses of odd order and, second, for each $m$, the system of dilations and translations of the function $\psi_m$ constitutes a Riesz basis; moreover, lower and upper Riesz bounds for these systems can be chosen universal, i.e., independent of $m$.
Keywords:
Rademacher functions, Rademacher chaos, Haar system, system of dilations and translations, splines, Riesz basis, Riesz bounds.
@article{MZM_2018_103_6_a5,
author = {S. F. Lukomskii and P. A. Terekhin and S. A. Chumachenko},
title = {Rademacher {Chaoses} in {Problems} of {Constructing} {Spline} {Affine} {Systems}},
journal = {Matemati\v{c}eskie zametki},
pages = {863--874},
publisher = {mathdoc},
volume = {103},
number = {6},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_6_a5/}
}
TY - JOUR AU - S. F. Lukomskii AU - P. A. Terekhin AU - S. A. Chumachenko TI - Rademacher Chaoses in Problems of Constructing Spline Affine Systems JO - Matematičeskie zametki PY - 2018 SP - 863 EP - 874 VL - 103 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2018_103_6_a5/ LA - ru ID - MZM_2018_103_6_a5 ER -
S. F. Lukomskii; P. A. Terekhin; S. A. Chumachenko. Rademacher Chaoses in Problems of Constructing Spline Affine Systems. Matematičeskie zametki, Tome 103 (2018) no. 6, pp. 863-874. http://geodesic.mathdoc.fr/item/MZM_2018_103_6_a5/