Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2018_103_5_a7, author = {A. A. Makhnev and M. S. Nirova}, title = {Distance-Regular {Shilla} {Graphs} with~$b_2=c_2$}, journal = {Matemati\v{c}eskie zametki}, pages = {730--744}, publisher = {mathdoc}, volume = {103}, number = {5}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_5_a7/} }
A. A. Makhnev; M. S. Nirova. Distance-Regular Shilla Graphs with~$b_2=c_2$. Matematičeskie zametki, Tome 103 (2018) no. 5, pp. 730-744. http://geodesic.mathdoc.fr/item/MZM_2018_103_5_a7/
[1] J. H. Koolen, J. Park, “Shilla distance-regular graphs”, European J. Combin., 31:8 (2010), 2064–2073 | DOI | MR | Zbl
[2] A. A. Makhnev, D. V. Paduchikh, “O gruppe avtomorfizmov distantsionno regulyarnogo grafa s massivom peresechenii $\{24,21,3;1,3,18\}$”, Algebra i logika, 51:4 (2012), 476–495 | MR | Zbl
[3] A. Jurišić, J. Vidali, “Extremal 1-codes in distance-regular graphs of diameter 3”, Des. Codes Cryptogr., 65:1-2 (2012), 29–47 | DOI | MR | Zbl
[4] J. Vidali, Kode v razdaljno regularnih grafih, Doctorska Dissertacija, Univerza v Ljubljani, Ljubljana, 2013
[5] A. E. Brouwer, A. M. Cohen, A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin, 1989 | MR | Zbl
[6] J. H. Koolen, J. Park, H. Yu, “An inequality involving the second largest and smallest eigenvalue of a distance-regular graph”, Linear Algebra Appl., 434:12 (2011), 2404–2412 | DOI | MR | Zbl
[7] J. H. Koolen, J. Park, “Distance-regular graphs with large $a_1$ or $c_2$ at least half the valency”, J. Combin. Theory Ser. A, 119:3 (2012), 546–555 | DOI | MR | Zbl