Distance-Regular Shilla Graphs with~$b_2=c_2$
Matematičeskie zametki, Tome 103 (2018) no. 5, pp. 730-744
Voir la notice de l'article provenant de la source Math-Net.Ru
A Shilla graph is defined as a distance-regular graph of diameter 3 with second eigenvalue $\theta_1$ equal to $a_3$. For a Shilla graph, let us put $a=a_3$ and $b=k/a$. It is proved in this paper that a Shilla graph with $b_2=c_2$ and noninteger eigenvalues has the following intersection array: $$ \biggl\{\frac{b^2(b-1)}2\mspace{2mu}, \frac{(b-1)(b^2-b+2)}2\mspace{2mu}, \frac{b(b-1)}4\mspace{2mu};1, \frac{b(b-1)}4\mspace{2mu}, \frac{b(b-1)^2}2\biggr\}. $$ If $\Gamma$ is a $Q$-polynomial Shilla graph with $b_2=c_2$ and $b=2r$, then the graph $\Gamma$ has intersection array $$ \{2rt(2r+1),(2r-1)(2rt+t+1),r(r+t);1,r(r+t),t(4r^2-1)\} $$ and, for any vertex $u$ in $\Gamma$, the subgraph $\Gamma_3(u)$ is an antipodal distance-regular graph with intersection array $$ \{t(2r+1),(2r-1)(t+1),1;1,t+1,t(2r+1)\}. $$ The Shilla graphs with $b_2=c_2$ and $b=4$ are also classified in the paper.
Keywords:
distance-regular graph, Shilla graph
Mots-clés : graph automorphism.
Mots-clés : graph automorphism.
@article{MZM_2018_103_5_a7,
author = {A. A. Makhnev and M. S. Nirova},
title = {Distance-Regular {Shilla} {Graphs} with~$b_2=c_2$},
journal = {Matemati\v{c}eskie zametki},
pages = {730--744},
publisher = {mathdoc},
volume = {103},
number = {5},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_5_a7/}
}
A. A. Makhnev; M. S. Nirova. Distance-Regular Shilla Graphs with~$b_2=c_2$. Matematičeskie zametki, Tome 103 (2018) no. 5, pp. 730-744. http://geodesic.mathdoc.fr/item/MZM_2018_103_5_a7/