Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2018_103_4_a6, author = {Kim Seongjeong}, title = {The {Groups~}$G_{n}^{2}$ with {Additional} {Structures}}, journal = {Matemati\v{c}eskie zametki}, pages = {549--567}, publisher = {mathdoc}, volume = {103}, number = {4}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_4_a6/} }
Kim Seongjeong. The Groups~$G_{n}^{2}$ with Additional Structures. Matematičeskie zametki, Tome 103 (2018) no. 4, pp. 549-567. http://geodesic.mathdoc.fr/item/MZM_2018_103_4_a6/
[1] V. O. Manturov, Non-Reidemeister Knot Theory and its Applications in Dynamical Systems, Geometry, and Topology, 2015, arXiv: 1501.05208v1
[2] V. O. Manturov, I. M. Nikonov, “On braids and groups $G_{n}^{k}$”, J. Knot Theory Ramifications, 24:13 (2015), 1541009 | MR | Zbl
[3] V. G. Bardakov, “The virtual and universal braids”, Fund. Math., 184 (2004), 1–18 | DOI | MR | Zbl
[4] V. G. Bardakov, P. Bellingeri, C. Damianti, “Unrestricted virtual braids, fused links and other quotients of virtual braid group”, J. Knot Theory Ramifications, 24:12 (2015), 1550063 | DOI | MR | Zbl
[5] S. Kim, V. O. Manturov, “The group $G_{n}^{2}$ and Invariants of free links valued in free groups”, J. Knot Theory Ramifications, 24:13 (2015), 1541010 | MR | Zbl
[6] D. A. Fedoseev, V. O. Manturov, “On marked braid groups”, J. Knot Theory Ramifications, 24:13 (2015), 1541005 | DOI | MR | Zbl
[7] M. Goussarov, M. Polyak, O. Viro, “Finite-type invariants of classical and virtual knots”, Topology, 39:5 (Sep 2000), 1045–1068 | DOI | MR | Zbl
[8] R. Fenn, R. Rimanyi, C. Rourke, “The braid-permutation group”, Topology, 36:1 (1997), 123–135 | DOI | MR | Zbl
[9] V. O. Manturov, On Groups $G_{n}^{2}$ and Coxeter Goups, 2015, arXiv: 1512.09273v1
[10] V. O. Manturov, “Chetnost v teorii uzlov”, Matem. sb., 201:5 (2010), 65–110 | DOI | MR | Zbl
[11] V. O. Manturov, D. P. Ilyutko, Virtual Knots. The State of the Art, World Sci., Singapore, 2013 | MR | Zbl