Remarks on Weak-Type Estimates for Certain Grand Square Functions
Matematičeskie zametki, Tome 103 (2018) no. 4, pp. 544-548.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this note we extend weak-type estimates obtained recently by A. K. Lerner to certain grand square functions by using a simple argument in terms of real variables. In this way, we improve a weak-type $L^1$-estimate for grand Littlewood–Paley operators due to N. N. Osipov.
Keywords: Littlewood–Paley operators, (grand) square functions, sharp aperture dependence, weak-type estimates, Lorentz spaces.
@article{MZM_2018_103_4_a5,
     author = {Yi Huang},
     title = {Remarks on {Weak-Type} {Estimates} for {Certain} {Grand} {Square} {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {544--548},
     publisher = {mathdoc},
     volume = {103},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_4_a5/}
}
TY  - JOUR
AU  - Yi Huang
TI  - Remarks on Weak-Type Estimates for Certain Grand Square Functions
JO  - Matematičeskie zametki
PY  - 2018
SP  - 544
EP  - 548
VL  - 103
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_103_4_a5/
LA  - ru
ID  - MZM_2018_103_4_a5
ER  - 
%0 Journal Article
%A Yi Huang
%T Remarks on Weak-Type Estimates for Certain Grand Square Functions
%J Matematičeskie zametki
%D 2018
%P 544-548
%V 103
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_103_4_a5/
%G ru
%F MZM_2018_103_4_a5
Yi Huang. Remarks on Weak-Type Estimates for Certain Grand Square Functions. Matematičeskie zametki, Tome 103 (2018) no. 4, pp. 544-548. http://geodesic.mathdoc.fr/item/MZM_2018_103_4_a5/

[1] A. K. Lerner, “On sharp aperture-weighted estimates for square functions”, J. Fourier Anal. Appl., 20:4 (2014), 784–800 | DOI | MR | Zbl

[2] P. Auscher, “Change of angle in tent spaces”, C. R. Math. Acad. Sci. Paris, 349:5-6 (2011), 297–301 | DOI | MR | Zbl

[3] R. R. Coifman, Y. Meyer, E. M. Stein, “Some new function spaces and their applications to harmonic analysis”, J. Funct. Anal., 62:2 (1985), 304–335 | DOI | MR | Zbl

[4] N. Aguilera, C. Segovia, “Weighted norm inequalities relating the $g\sp*_{\lambda}$ and the area functions”, Studia Math., 61:3 (1977), 293–303 | DOI | MR | Zbl

[5] C. Fefferman, “Inequalities for strongly singular convolution operators”, Acta Math., 124 (1970), 9–36 | DOI | MR | Zbl

[6] Y. Huang, Operator Theory on Tent Spaces, Thesis, Universite Paris-Sud, Orsay, 2015

[7] L. Grafakos, Classical Fourier Analysis, Grad. Texts in Math., 249, Springer, New York, 2008 | MR | Zbl

[8] N. J. Kalton, “Convexity, type and the three space problem”, Studia Math., 69:3 (1981), 247–287 | MR | Zbl

[9] J. García-Cuerva, J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland Math. Stud., 116, North-Holland Publ., Amsterdam, 1985 | MR | Zbl

[10] N. N. Osipov, “Funktsiya $G_\lambda^*$ kak norma operatora Kalderona–Zigmunda”, Matem. zametki, 86:3 (2009), 421–428 | DOI | MR | Zbl

[11] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Math. Ser., 30, Princeton Univ. Press, Princeton, NJ, 1970 | MR | Zbl

[12] A. Torchinsky, Real-Variable Methods in Harmonic Analysis, Pure Appl. Math., 123, Academic Press, Orlando, FL, 1986 | MR | Zbl

[13] A. Uchiyama, Hardy Spaces on the Euclidean Space, Springer, Tokyo, 2001 | MR | Zbl